ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 27, 2018
Accepted March 20, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Aqueous two-phase systems for cephalexin monohydrate partitioning using poly ethylene glycol and sodium tartrate dihydrate:Experimental and thermodynamic modeling

1Faculty of Chemical Engineering, Babol Noshirvani University of Technology, P.O. Box, 484, Babol, Iran 2Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
h.bakhshi@nit.ac.ir
Korean Journal of Chemical Engineering, May 2019, 36(5), 780-788(9), 10.1007/s11814-019-0256-4
downloadDownload PDF

Abstract

The partitioning of cephalexin monohydrate in aqueous two-phase system (ATPS) of polyethylene glycol (PEG) with different molecular weights (1000, 2000, 6000, and 8000) and sodium tartrate dihydrate salt was investigated. Equilibrium compositions of two liquid phases were obtained in each system. The experimental data were correlated using the extended NRTL and a modified UNIQUAC (UNIQUAC+DH) models by adding a Debye-Huckel term (DH) to original models for taking into account the long range forces term of activity coefficient of components. The results show that the molecular weight of the polymer has a considerable effect on the partition coefficient of cephalexin monohydrate. The comparison of results for presented models with the experimental data demonstrates that the investigated thermodynamic models can correlate the equilibrium composition very well. The extended NRTL model with AARD of 0.099 is superior to UNIQUAC+DH.

References

Belter P, Cussler E, Hu W, Elution chromatography-Bioseparation, Downstream Processing for Biotechnology, New York (1988).
Mokhtarani B, Karimzadeh R, Amini MH, Manesh SD, Biochem. Eng. J., 38, 241 (2008)
Mistry SL, Kaul A, Merchuk J, Asenjo J, J. Chromatogr. A, 741, 151 (1996)
Mistry S, Asenjo J, Zaror C, Bioseparation, 3, 343 (1992)
Huenupi E, Gomez A, Andrews BA, Asenjo JA, J. Chem. Technol. Biotechnol., 74(3), 256 (1999)
Iqbal M, Tao Y, Xie S, Zhu Y, Chen D, Wang X, Huang L, Peng D, Sattar A, Shabbir MAB, Biol. Proced. Online., 18, 18 (2016)
Tada ED, Loh W, Pessoa PD, Fluid Phase Equilib., 218(2), 221 (2004)
de Lemos LR, Santos IJB, Rodrigues GD, Ferreira GMD, da Silva MDCH, da Silva MDCH, de Carvalho RMM, J. Chem. Eng. Data, 55, 1193 (2009)
Li YL, Huang R, Zhu Q, Yu YH, Hu J, J. Chem. Eng. Data, 62(2), 796 (2017)
Li Y, Zhang N, Xu S, Zhu Q, Hu J, J. Dispersion Sci. Technol., 1 (2018).
Yu L, Zhang H, Yang L, Tian K, Protein Expression Purif., 156, 8 (2019)
Madadi B, Pazuki G, Nasernejad B, J. Chem. Eng. Data, 58(10), 2785 (2013)
Wang F, Chen T, Shang Y, Liu H, Korean J. Chem. Eng., 28(3), 923 (2011)
Zhang J, Wang Y, Peng Q, Korean J. Chem. Eng., 30(6), 1284 (2013)
Albertsson PA, Partition of cell particles and macromolecules: separation and purification of biomolecules, cell organelles, membranes, and cells in aqueous polymer two-phase systems and their use in biochemical analysis and biotechnology, 346. Wiley New York etc. (1986).
Karkas T, Onal S, Biochem. Eng. J., 60, 142 (2012)
Beijerinck MW, Uber eine Eigentumlichkeit der loslichen Starke, Centr-Bl. F. Bakter. U. Parasitenk, 2 (1896).
Zaslavsky BY, Aqueous two-phase partitioning: physical chemistry and bioanalytical applications, CRC Press (1994).
Asenjo JA, Andrews BA, J. Chromatogr. A, 1218, 8826 (2011)
Silverio SC, Ferreira LA, Martins JA, Marcos JC, Macedo EA, Teixeira JA, Fluid Phase Equilib., 322, 19 (2012)
de Barros DP, Campos SR, Madeira PP, Azevedo AM, Baptista AM, Aires-Barros MR, J. Chromatogr. A, 1329, 52 (2014)
Nitsawang S, Hatti-Kaul R, Kanasawuda P, Enzyme Microb. Technol., 39(5), 1103 (2006)
Zafarani-Moattar MT, Shekaari H, Hashemzadeh T, Fluid Phase Equilib., 459, 85 (2018)
Waziri SM, Abu-Sharkh BF, Ali SA, Fluid Phase Equilib., 205(2), 275 (2003)
Rahmani A, Rostami AA, Pirdashti M, Mobalegholeslam P, Korean J. Chem. Eng., 34(4), 1149 (2017)
Se RA, Aznar M, Korean J. Chem. Eng., 47, 1401 (2002)
Shanbhag VP, Axelsson CG, Eur. J. Biochem., 60, 17 (1975)
Sadeghi R, Fluid Phase Equilib., 246(1-2), 89 (2006)
Sosa FHB, Sampaio DD, Farias FO, Bonassoli ABG, Igarashi-Mafra L, Mafra MR, Fluid Phase Equilib., 449, 68 (2017)
Li M, Zhu ZQ, Wu YT, Lin DQ, Chem. Eng. Sci., 53(15), 2755 (1998)
Khayati G, Chem. Eng. Commun., 200(5), 667 (2013)
Haghtalab A, Mokhtarani B, Maurer G, J. Chem. Eng. Data, 48(5), 1170 (2003)
Duran A, Claros M, Jimenez YP, J. Mol. Liq., 249, 562 (2018)
Lee SC, Ahn BS, Kim JG, Biotechnol. Prog., 18(1), 108 (2002)
Yang CF, Cussler EL, Biotechnol. Bioeng., 69(1), 66 (2000)
Silvestri HH, US Patent, 3,862,186 (1975).
Ghosh AC, Mathur RK, Dutta NN, Extraction and purification of cephalosporin antibiotics, Springer, Regional Research Laboratory, India, 111 (1997).
Klomklao S, Benjakul S, Visessanguan W, Simpson BK, Kishimura H, Process Biochem., 40(9), 3061 (2005)
Han J, Wang Y, Kang W, Li C, Yan Y, Pan J, Xie XJ, Microchim. Acta, 169, 15 (2010)
Arnold T, Linke DJB, Biotechniques, 43, 427 (2007)
Li S, He C, Liu H, Li K, Liu F, J. Chromatogr. B, 826, 58 (2005)
Doozandeh SG, Pazuki G, Madadi B, Rohani AA, J. Mol. Liq., 174, 95 (2012)
Khederlou K, Pazuki GR, Taghikhani V, Vossoughi M, Ghotbi C, J. Chem. Eng. Data, 54(8), 2239 (2009)
Shoushtari BA, Shahrouzi JR, Pazuki G, J. Chem. Eng. Data, 61(7), 2605 (2016)
Murari GF, Penido JA, Machado PAL, de Lemos LR, Lemes NHT, Virtuoso LS, Rodrigues GD, Mageste AB, Fluid Phase Equilib., 406, 61 (2015)
Zafarani-Moattar MT, Hamzehzadeh S, Hosseinzadeh S, Fluid Phase Equilib., 268(1-2), 142 (2008)
Messnaoui B, Ouiazzane S, Bouhaouss A, Bounahmidi T, Calphad., 32, 566 (2008)
Guo B, Chen L, Liu Y, Yan Z, J. Solution Chem., 46, 1059 (2017)
Hamta A, Mohammadi A, Dehghani MR, Feyzi F, J. Solution Chem., 47, 1 (2017)
Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Molecular thermodynamics of fluid-phase equilibria, Pearson Education (1998).
Zafarani-Moattar MT, Sadeghi R, Hamidi AA, Fluid Phase Equilib., 219(2), 149 (2004)
Wu YT, Lin DQ, Zhu ZQ, Fluid Phase Equilib., 147(1-2), 25 (1998)
Haghtalab A, Joda M, Fluid Phase Equilib., 278(1-2), 20 (2009)
Seyf JY, Haghtalab A, J. Chem. Eng. Data, 61(6), 2170 (2016)
Renon H, Prausnitz JM, AIChE J., 14, 135 (1968)
Flory PJ, J. Chem. Phys., 10, 51 (1942)
Singh R, Darbari G, Verma G, J. Chem. Phys., 46, 151 (1967)
Pazuki GR, Taghikhani V, Vossoughi M, Alemzadeh I, Chem. Eng. Res. Des., 87(3A), 335 (2009)
Taghavivand M, Pazuki G, Fluid Phase Equilib., 379, 62 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로