Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 17, 2019
Accepted April 8, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Vortex generation by viscoelastic sheath flow in flow-focusing microchannel
1Department of Energy Systems Research, Ajou University, Suwon 16499, Korea 2Department of Chemical Engineering, Ajou University, Suwon 16499, Korea
jumin@ajou.ac.kr
Korean Journal of Chemical Engineering, June 2019, 36(6), 837-842(6), 10.1007/s11814-019-0272-4
Download PDF
Abstract
Microfluidics-based technologies have attracted much attention since the fluid flow can be controlled precisely and only small sample volumes are required. Viscoelastic non-Newtonian fluids such as polymer solution and biofluids are frequently used in microfluidic analyses, and it is essential to understand the small-scale flow dynamics of such viscoelastic fluids. In this work, we report on vortex generation at the junction region of a flow-focusing microchannel, where a central flow stream of a Newtonian fluid meets two sheath flows of a non-Newtonian poly (ethylene oxide) aqueous solution. We elucidated the vortex-generation mechanism by the backward-flow component induced by the first normal stress difference in the viscoelastic sheath fluid. We systematically investigated the effects of polymer concentration, total flow rate, and total to central-stream flow-rate ratio, on the vortex generation. In addition, we demonstrated that this phenomenon can be engineered to enhance the mixing in the flow-focusing microchannel. We expect this work to be helpful for the understanding of viscoelastic flow dynamics in microscale flows and also for the development of microfluidic mixers.
References
Sackmann EK, Fulton AL, Beebe DJ, Nature, 507(7491), 181 (2014)
Liu Y, Jiang X, Lab Chip, 17, 3960 (2017)
Dendukuri D, Pregibon DC, Collins J, Hatton TA, Doyle PS, Nat. Mater., 5(5), 365 (2006)
Tabeling P, Introduction to microfluidics, Oxford University Press, New York (2006).
Lee CY, Chang CL, Wang YN, Fu LM, Int. J. Mol. Sci., 12(5), 3263 (2011)
Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ, J. Microelectromech. S., 9, 190 (2000)
Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM, Science, 295, 647 (2002)
Burghelea T, Segre E, Bar-Joseph I, Groisman A, Steinberg V, Phys. Rev. E, 69, 066305 (2004)
Groisman A, Steinberg V, Nature, 405, 53 (2000)
Groisman A, Steinberg V, Nature, 410, 905 (2001)
Rodd LE, Scott TP, Boger DV, Cooper-White JJ, McKinley GH, J. Non-Newton. Fluid Mech., 129(1), 1 (2005)
Hong SO, Cooper-White J, Kim JM, Appl. Phys. Lett., 108, 014103 (2016)
Oliveira MSN, Pinho FT, Alves MA, J. Fluid Mech., 711, 171 (2012)
Sullivan SP, Akpa BS, Matthews SM, Fisher AC, Gladden LF, Johns ML, Sens. Actuators B-Chem., 123, 1142 (2007)
You JB, Kang K, Tran TT, Park H, Hwang WR, Kim JM, Im SG, Lab Chip, 15, 1727 (2015)
Xia Y, Whitesides GM, Angew. Chem.-Int. Edit., 37, 550 (1998)
Yang S, Kim JY, Lee SJ, Lee SS, Kim JM, Lab Chip, 11, 266 (2011)
Graessley WW, Polymer, 21, 258 (1980)
Tirtaatmadja V, McKinley GH, Cooper-White JJ, Phys. Fluids, 18, 043101 (2006)
Bird RB, Armstrong RC, Hassager O, Dynamics of polymeric liquids, Wiley Interscience, New York (1987).
Magda JJ, Lou J, Baek SG, DeVries KL, Polymer, 32, 2000 (1991)
Liu YG, Jun YG, Steinberg V, J. Rheol., 53(5), 1069 (2009)
Liu Y, Jiang X, Lab Chip, 17, 3960 (2017)
Dendukuri D, Pregibon DC, Collins J, Hatton TA, Doyle PS, Nat. Mater., 5(5), 365 (2006)
Tabeling P, Introduction to microfluidics, Oxford University Press, New York (2006).
Lee CY, Chang CL, Wang YN, Fu LM, Int. J. Mol. Sci., 12(5), 3263 (2011)
Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ, J. Microelectromech. S., 9, 190 (2000)
Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM, Science, 295, 647 (2002)
Burghelea T, Segre E, Bar-Joseph I, Groisman A, Steinberg V, Phys. Rev. E, 69, 066305 (2004)
Groisman A, Steinberg V, Nature, 405, 53 (2000)
Groisman A, Steinberg V, Nature, 410, 905 (2001)
Rodd LE, Scott TP, Boger DV, Cooper-White JJ, McKinley GH, J. Non-Newton. Fluid Mech., 129(1), 1 (2005)
Hong SO, Cooper-White J, Kim JM, Appl. Phys. Lett., 108, 014103 (2016)
Oliveira MSN, Pinho FT, Alves MA, J. Fluid Mech., 711, 171 (2012)
Sullivan SP, Akpa BS, Matthews SM, Fisher AC, Gladden LF, Johns ML, Sens. Actuators B-Chem., 123, 1142 (2007)
You JB, Kang K, Tran TT, Park H, Hwang WR, Kim JM, Im SG, Lab Chip, 15, 1727 (2015)
Xia Y, Whitesides GM, Angew. Chem.-Int. Edit., 37, 550 (1998)
Yang S, Kim JY, Lee SJ, Lee SS, Kim JM, Lab Chip, 11, 266 (2011)
Graessley WW, Polymer, 21, 258 (1980)
Tirtaatmadja V, McKinley GH, Cooper-White JJ, Phys. Fluids, 18, 043101 (2006)
Bird RB, Armstrong RC, Hassager O, Dynamics of polymeric liquids, Wiley Interscience, New York (1987).
Magda JJ, Lou J, Baek SG, DeVries KL, Polymer, 32, 2000 (1991)
Liu YG, Jun YG, Steinberg V, J. Rheol., 53(5), 1069 (2009)