Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 17, 2018
Accepted January 17, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Fed-batch acetone-butanol-ethanol fermentation using immobilized Clostridium acetobutylicum in calcium alginate beads
Department of Biological Engineering, Inha University, Incheon 22212, Korea 1Department of Advanced Materials & Chemical Engineering, Hannam University, Daejeon 34054, Korea
-
Korean Journal of Chemical Engineering, June 2019, 36(6), 909-913(5), 10.1007/s11814-018-0232-z
Download PDF
Abstract
Butanol fermentation has garnered renewed interest due to the search for renewable sources of energy. Although acetone-butanol-ethanol (ABE) fermentation has been studied for a long time, the methods utilized yield either a high butanol/ABE productivity and low titer or high butanol/ABE titer at a low productivity. In this work, we report the utilization of a highly dense calcium alginate immobilized Clostridium acetobutylicum cells in combination with fed-batch mode of fermentation to attain a high butanol/ABE productivity and concentration. A butanol concentration of up to 21.6 g/L was attained with a productivity of 0.40 g/L·hr, which is a 65% and 192% improvement to the conventional batch fermentation.
References
Garcia V, Pakkila J, Ojamo H, Muurinen E, Keiski RL, Energy Rev., 15, 964 (2011)
Ndaba B, Chiyanzu I, Marx S, Biotechnol. Rep., 8, 1 (2015)
Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS, Biotechnol. Bioeng., 101(2), 209 (2008)
Trindade WRDS, Santos RGD, Renew. Sust. Energ. Rev., 69, 642 (2017)
Sauer M, FEMS Microbiol. Lett., 363, fnw134 (2016)
Xue C, Zhang X, Wang J, Xiao M, Chen L, Bai F, Biotechnol. Biofuels, 10, 148 (2017)
Jones DT, Woods DR, Microbiol. Rev., 50, 484 (1986)
Mariano AP, Filho RM, Bioenerg. Res., 5, 504 (2012)
Outram V, Lalander CA, Lee JGM, Davies ET, Harvey AP, Biotechnol. Prog., 33(3), 563 (2017)
Durre P, Biotechnol. J., 2, 1525 (2007)
Jang YS, Lee JY, Lee J, Park JH, Im JA, Eom MH, Lee J, Lee SH, Song H, Cho JH, Seung DY, Lee SY, mBio, 3, e00314 (2012)
Herman NA, Li J, Bedi R, Turchi B, Liu X, Miller MJ, Zhang W, Appl. Environ. Microbiol., 83, e02942 (2017)
Sarchami T, Munch G, Johnson E, Kießlich S, Rehmann L, Fermentation, 2, 13 (2016)
Zhu C, Chen LJ, Xue C, Bai FW, Biotechnol. Biofuels, 11, 128 (2018)
Li SY, Chiang CJ, Tseng IT, He CR, Chao YP, FEMS Microbiol. Lett., 363, fnw107 (2016)
Allam RF, Shafei MS, Sallam LAR, Egyp. J. Biomed. Sci., 8, 104 (2001)
Sallam LAR, El-Refai AH, El-Zanati AE, Shafei MS, El-Ardi OAM, Arab J. Biotech., 7, 1 (2004)
Chang Z, Cai D, Wang Y, Chen CJ, Fu CH, Wang GQ, Qin PY, Wang Z, Tan TW, Bioresour. Technol., 205, 82 (2016)
Jeon YJ, Lee YY, Ann. N.Y. Acad. Sci., 506, 536 (1987)
Miller GL, Anal. Chem., 31, 426 (1959)
Ha SH, Mai NL, Koo YM, Process Biochem., 45(12), 1899 (2010)
Menchavez RN, Ha SH, Appl. Biochem. Biotechnol., 171(5), 1159 (2013)
Doremus MG, Linden JC, Moreira AR, Biotechnol. Bioeng., 27, 852 (1985)
Lamed RJ, Lobos JH, Su TM, Appl. Environ. Microbiol., 54, 1216 (1988)
Xia ML, Wang L, Yang ZX, Chen HZ, Biotechnol. Biofuels, 8, 225 (2015)
Alsaker KV, Papoutsakis ET, J. Bacteriol., 187, 7103 (2005)
Jones DT, Van Der Westhuizen A, Long S, Allcock ER, Reid SJ, Woods DR, Appl. Environ. Microbiol., 43, 1434 (1982)
Chang YH, Chang KS, Chen CY, Hsu CL, Chang TC, Jang HD, Fermentation, 4, 45 (2018)
Quiros C, Garcia LA, Diaz M, Process Biochem., 31(8), 813 (1996)
Jain D, Bar-Shalom D, Drug Dev. Ind. Pharm., 40, 1576 (2014)
Josef E, Zilberman M, Bianco-Peled H, Acta Biomater., 6, 4642 (2010)
Yerushalmi L, Volesky B, Szczesny T, Appl. Microbiol. Biotechnol., 22, 103 (1985)
Al-Shorgani NKN, Shukor H, Abdeshahian P, Kalil MS, Yusoff WMW, Hamid AA, Saudi J. Biol. Sci., 25, 1308 (2018)
Ezeji TC, Qureshi N, Blaschek HP, Appl. Microbiol. Biotechnol., 63(6), 653 (2004)
Qureshi N, Blaschek HP, Appl. Biochem. Biotechnol., 84, 225 (2000)
Yu M, Du Y, Jiang W, Chang WL, Yang ST, Tang IC, Appl. Microbiol. Biotechnol., 93, 881 (2012)
Choi YJ, Lee J, Jang YS, Lee SY, mBio, 5, e01524 (2014)
Ndaba B, Chiyanzu I, Marx S, Biotechnol. Rep., 8, 1 (2015)
Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS, Biotechnol. Bioeng., 101(2), 209 (2008)
Trindade WRDS, Santos RGD, Renew. Sust. Energ. Rev., 69, 642 (2017)
Sauer M, FEMS Microbiol. Lett., 363, fnw134 (2016)
Xue C, Zhang X, Wang J, Xiao M, Chen L, Bai F, Biotechnol. Biofuels, 10, 148 (2017)
Jones DT, Woods DR, Microbiol. Rev., 50, 484 (1986)
Mariano AP, Filho RM, Bioenerg. Res., 5, 504 (2012)
Outram V, Lalander CA, Lee JGM, Davies ET, Harvey AP, Biotechnol. Prog., 33(3), 563 (2017)
Durre P, Biotechnol. J., 2, 1525 (2007)
Jang YS, Lee JY, Lee J, Park JH, Im JA, Eom MH, Lee J, Lee SH, Song H, Cho JH, Seung DY, Lee SY, mBio, 3, e00314 (2012)
Herman NA, Li J, Bedi R, Turchi B, Liu X, Miller MJ, Zhang W, Appl. Environ. Microbiol., 83, e02942 (2017)
Sarchami T, Munch G, Johnson E, Kießlich S, Rehmann L, Fermentation, 2, 13 (2016)
Zhu C, Chen LJ, Xue C, Bai FW, Biotechnol. Biofuels, 11, 128 (2018)
Li SY, Chiang CJ, Tseng IT, He CR, Chao YP, FEMS Microbiol. Lett., 363, fnw107 (2016)
Allam RF, Shafei MS, Sallam LAR, Egyp. J. Biomed. Sci., 8, 104 (2001)
Sallam LAR, El-Refai AH, El-Zanati AE, Shafei MS, El-Ardi OAM, Arab J. Biotech., 7, 1 (2004)
Chang Z, Cai D, Wang Y, Chen CJ, Fu CH, Wang GQ, Qin PY, Wang Z, Tan TW, Bioresour. Technol., 205, 82 (2016)
Jeon YJ, Lee YY, Ann. N.Y. Acad. Sci., 506, 536 (1987)
Miller GL, Anal. Chem., 31, 426 (1959)
Ha SH, Mai NL, Koo YM, Process Biochem., 45(12), 1899 (2010)
Menchavez RN, Ha SH, Appl. Biochem. Biotechnol., 171(5), 1159 (2013)
Doremus MG, Linden JC, Moreira AR, Biotechnol. Bioeng., 27, 852 (1985)
Lamed RJ, Lobos JH, Su TM, Appl. Environ. Microbiol., 54, 1216 (1988)
Xia ML, Wang L, Yang ZX, Chen HZ, Biotechnol. Biofuels, 8, 225 (2015)
Alsaker KV, Papoutsakis ET, J. Bacteriol., 187, 7103 (2005)
Jones DT, Van Der Westhuizen A, Long S, Allcock ER, Reid SJ, Woods DR, Appl. Environ. Microbiol., 43, 1434 (1982)
Chang YH, Chang KS, Chen CY, Hsu CL, Chang TC, Jang HD, Fermentation, 4, 45 (2018)
Quiros C, Garcia LA, Diaz M, Process Biochem., 31(8), 813 (1996)
Jain D, Bar-Shalom D, Drug Dev. Ind. Pharm., 40, 1576 (2014)
Josef E, Zilberman M, Bianco-Peled H, Acta Biomater., 6, 4642 (2010)
Yerushalmi L, Volesky B, Szczesny T, Appl. Microbiol. Biotechnol., 22, 103 (1985)
Al-Shorgani NKN, Shukor H, Abdeshahian P, Kalil MS, Yusoff WMW, Hamid AA, Saudi J. Biol. Sci., 25, 1308 (2018)
Ezeji TC, Qureshi N, Blaschek HP, Appl. Microbiol. Biotechnol., 63(6), 653 (2004)
Qureshi N, Blaschek HP, Appl. Biochem. Biotechnol., 84, 225 (2000)
Yu M, Du Y, Jiang W, Chang WL, Yang ST, Tang IC, Appl. Microbiol. Biotechnol., 93, 881 (2012)
Choi YJ, Lee J, Jang YS, Lee SY, mBio, 5, e01524 (2014)