ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 9, 2018
Accepted January 14, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Enhancing natural gas dehydration performance using electrospun nanofibrous sol-gel coated mixed matrix membranes

Department of Chemical Engineering, School of Engineering, Yasouj University, Yasouj, Iran 1Physics Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Korean Journal of Chemical Engineering, June 2019, 36(6), 914-928(15), 10.1007/s11814-018-0226-x
downloadDownload PDF

Abstract

The dehydration process of natural gas was investigated by mixed matrix membranes (MMM), which were fabricated by electrospinning and sol-gel coating methods. Silica and titania nanoparticles (NPs) were incorporated into the polymer matrix via sol-gel method. The fabricated MMMs were characterized by field emission electron microscopy (FESEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Dehydration tests were carried out for wet pure methane and natural gas streams individually. The effects of different process parameters, including feed and sweep gas flow rates, moisture content in the feed, feed pressure and other hydrocarbons in the feed were investigated. The prepared electrospun nanofibrous supports (ESNS) have smaller fiber diameters in comparison to previously reported works, and with regard to the commercially available materials, contribute to higher water vapor permeation. The results showed that by increasing the feed pressure from 2.5 to 15 bar for the membranes without NPs, the permeance of methane and water vapor was decreased by 8.2 and 29%, respectively. It was also observed that the permeance of heavier hydrocarbons in Pebax 1657 membrane is higher than methane, leading to the increase of H2O/CH4 selectivity and the loss of heavier hydrocarbons. Finally, determining the resistances of the support and selective layers based on the existing empirical relations demonstrated that the total resistance to water vapor transmission had decreased by 75.2% using ESNS instead of microporous supports (MPS). In addition, the contribution of support layer resistances was decreased from 67% in MPS membranes to less than 30% in ESNS ones.

References

Sakheta A, Zahid U, Chem. Eng. Res. Des., 137, 70 (2018)
Kong ZY, Mahmoud A, Liu S, Sunarso J, J. Nat. Gas Sci. Eng., 56, 486 (2018)
Neagu M, Cursaru DL, J. Nat. Gas Sci. Eng., 37, 327 (2017)
Santos MGRS, Correia LMS, de Medeiros JL, Araujo ODF, Cheric, 149, 760 (2017)
Shooshtari SHR, Shahsavand A, Appl. Therm. Eng., 139, 76 (2018)
Dalane K, Svendsen HF, Hillestad M, Deng LY, J. Membr. Sci., 556, 263 (2018)
Scholes CA, Stevens GW, Kentish SE, Fuel, 96(1), 15 (2012)
Baker RW, Vapor and Gas Separation by Membranes, in: Adv. Membr. Technol. Appl., Wiley, New York (2008).
Sreekumar TV, Liu T, Min BG, Guo H, Kumar S, Hauge RH, Smalley RE, Adv. Mater., 16(1), 58 (2004)
Ge JJ, Hou HQ, Li Q, Graham MJ, Greiner A, Reneker DH, Harris FW, Cheng SZD, J. Am. Chem. Soc., 126(48), 15754 (2004)
Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA, Langmuir, 30(51), 15504 (2014)
Ji L, Zhang X, Mater. Lett., 62, 2165 (2008)
Jung HR, Ju DH, Lee WJ, Zhang XW, Kotek R, Electrochim. Acta, 54(13), 3630 (2009)
Yang JP, Chen ZK, Yang G, Fu SY, Ye L, Polymer, 49(13-14), 3168 (2008)
Von Wroblewski S, Ann. Phys. u Chem., 8, 29 (1879)
Srivastava V, Gusain D, Sharma YC, Ceram. Int., 39, 9803 (2013)
Wu CL, Zhang MQ, Rong MZ, Friedrich K, Compos. Sci. Technol., 65, 635 (2005)
Chiang CL, Chang RC, Chiu YC, Thermochim. Acta, 453(2), 97 (2007)
Setoodeh N, Darvishi P, Lashanizadegan A, J. Dispersion Sci. Technol., 39, 711 (2017)
Setoodeh N, Darvishi P, Lashanizadegan A, J. Dispersion Sci. Technol., 39, 452 (2017)
Potreck J, Nijmeijer K, Kosinski T, Wessling M, J. Membr. Sci., 338(1-2), 11 (2009)
Barrie JA, Haegg MB, Membranes in gas separation, in: 4th BOC Priest. Conf., 89 (1986).
Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau I, J. Polym. Sci. B: Polym. Phys., 38(3), 415 (2000)
Mulder M, Basic principles of membrane technology, Kluwer Academic Publishers, London (1996).
Barbi V, Funari SS, Gehrke R, Scharnagl N, Stribeck N, Macromolecules, 36(3), 749 (2003)
Metz SJ, Mulder MHV, Wessling M, Film, 37, 4590 (2004)
Watari T, Wang HY, Kuwahara K, Tanaka K, Kita H, Okamoto K, J. Membr. Sci., 219(1-2), 137 (2003)
Chiou JS, Paul DR, Ind. Eng. Chem. Res., 27, 2161 (1988)
Chen G, Zhang XS, Wang JH, Zhang SB, J. Appl. Polym. Sci., 106(5), 3179 (2007)
Lin H, Thompson SM, Serbanescu-Martin A, Wijmans JG, Amo KD, Lokhandwala KA, Merkel TC, J. Membr. Sci., 413-414, 70 (2012)
Akhtar FH, Kumar M, Peinemann KV, J. Membr. Sci., 525, 187 (2016)
Ko FK, Wan Y, Introduction to nanofiber materials, Cambridge University Press, New York (2014).
Wang X, Chen X, Yoon K, Fang D, Hsiao BS, Chu B, Environ. Sci. Technol., 39, 7684 (2005)
Yoon K, Kim K, Wang XF, Fang DF, Hsiao BS, Chu B, Polymer, 47(7), 2434 (2006)
Gibson DRP, Schreuder-Gibson HL, Gibson P, Schreuder-Gibson H, Rivin D, Colloids Surf. A: Physicochem. Eng. Asp., 188, 469 (2001)
Grafe T, Graham K, Int. Nanwovens Tech. Conf., 24 (2002).
Barhate RS, Ramakrishna S, J. Membr. Sci., 296(1-2), 1 (2007)
Huizing R, Merida W, Ko F, J. Membr. Sci., 461, 146 (2014)
Poormohammadian SJ, Darvishi P, Dezfuli AMG, Chin. J. Chem. Eng., 27, 100 (2018)
Metz SJ, van de Ven WJC, Potreck J, Mulder MHV, Wessling M, J. Membr. Sci., 251(1-2), 29 (2005)
Metz SJ, van de Ven WJC, Mulder MHV, Wessling M, J. Membr. Sci., 266(1-2), 51 (2005)
Satterfield MB, Benziger JB, J. Phys. Chem. B, 112(12), 3693 (2008)
Ji L, Saquing C, Khan SA, Zhang X, Nanotechnology, 19, 85605 (2008)
Wang MJ, Wolff S, Donnet JB, Rubber Chem. Technol., 64, 714 (1991)
Sawicka KM, Gouma P, J. Nanoparticle Res., 8, 769 (2006)
Gao J, Gao T, Sailor MJ, Appl. Phys. Lett., 77, 901 (2000)
Nagel H, Hezel R, Sol. Energy Mater. Sol. Cells, 65, 71 (2001)
Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM, Nat. Mater., 6(4), 278 (2007)
Roy P, Kim D, Lee K, Spiecker E, Schmuki P, Nanoscale, 2, 45 (2010)
Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
Fujishima A, Honda K, Nature, 238, 37 (1972)
Wang X, Fujimaki M, Awazu K, Opt. Express., 13, 1486 (2005)
Kim HM, Miyaji F, Kokubo T, Nakamura T, J. Biomed. Mater. Res., 32, 409 (1996)
Alvarez D, Novoa XR, Perez C, Prog. Org. Coat., 96, 3 (2015)
Wang D, Bierwagen G, Prog. Org. Coat., 64, 327 (2009)
Lin HQ, Thompson SM, Serbanescu-Martin A, Wijmans JG, Amo KD, Lokhandwala KA, Low BT, Merkel TC, J. Membr. Sci., 432, 106 (2013)
Ingole PG, Baig MI, Choi WK, Lee HK, J. Mater. Chem. A, 4, 5592 (2016)
Xing R, Rao YX, TeGrotenhuis W, Canfield N, Zheng F, Winiarski DW, Liu W, Chem. Eng. Sci., 104, 596 (2013)
Baumgarten PK, J. Colloid Interface Sci., 36, 71 (1971)
Doshi J, Reneker DH, Sect. Title Text. Fibers, 35, 151 (1995)
Fong H, Chun I, Reneker DH, Polymer, 40(16), 4585 (1999)
Deitzel JM, Kleinmeyer J, Harris D, Tan NCB, Polymer, 42(1), 261 (2001)
Demir MM, Yilgor I, Yilgor E, Erman B, Polymer, 43(11), 3303 (2002)
Van Franeker JJ, Turbiez M, Li W, Wienk MM, Janssen RAJ, Nat. Commun., 6, 6229 (2015)
Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62 (1968)
Sakka S, SoleGel Process and Applications, in: Handb. Adv. Ceram. Mater. Appl. Process. Prop., 883 (2013).
Baker RW, Membrane Technology and Applications, Wiley, New York (2004).
Shen Y, Lua AC, Chem. Eng. J., 188, 199 (2012)
Bondi A, J. Phys. Chem., 68, 441 (1964)
Zhao YH, Abraham MH, Zissimos AM, J. Org. Chem., 68, 7368 (2003)
Jomekian A, Behbahani RM, Mohammadi T, Kargari A, Korean J. Chem. Eng., 34(2), 440 (2017)
Bondar VI, Freeman BD, Pinnau I, J. Polym. Sci. B: Polym. Phys., 37(17), 2463 (1999)
Kim JH, Lee YM, J. Membr. Sci., 193(2), 209 (2001)
Khosravi A, Sadeghi M, Banadkohi HZ, Talakesh MM, Ind. Eng. Chem. Res., 53(5), 2011 (2014)
Ma CG, Rong MZ, Zhang MQ, Friedrich K, Polym. Eng. Sci., 45(4), 529 (2005)
Choudalakis G, Gotsis AD, Curr. Opin. Colloid Interface Sci., 17, 132 (2012)
Bondar VI, Freeman BD, Pinnau I, J. Polym. Sci. B: Polym. Phys., 38(15), 2051 (2000)
Wang KL, Mccrayb SH, Newboldb DD, Cussler EL, J. Membr. Sci., 72, 231 (1992)
Baker RW, Membrane Technology and Applications, Wiley, New York (2012).
Merkel TC, Bondar V, Nagai K, Freeman BD, J. Polym. Sci. B: Polym. Phys., 38(2), 273 (2000)
Gabelman A, Hwang ST, J. Membr. Sci., 159(1-2), 61 (1999)
Massman WJ, Atmos. Environ., 32, 1111 (1998)
Chen GQ, Scholes CA, Qiao GG, Kentish SE, J. Membr. Sci., 379(1-2), 479 (2011)
Yave W, Shishatskiy S, Abetz V, Matson S, Litvinova E, Khotimskiy V, Peinemann KV, Macromol. Chem. Phys., 208, 2412 (2007)
Wahab MSA, Sunarti AR, Membr. Sci. Technol., 2, 78 (2015)
Jay MS, Tripodi MK, J. Membr. Sci., 8, 233 (1981)
Wijmans JG, Athayde AL, Daniels R, Ly JH, Kamaruddin HD, Pinnau I, J. Membr. Sci., 109(1), 135 (1996)
Kneifel K, Nowak S, Albrecht W, Hilke R, Just R, Peinemann KV, J. Membr. Sci., 276(1-2), 241 (2006)
Basafa M, Chenar MP, Sep. Sci. Technol., 49(16), 2465 (2014)
Dalton PD, Klee D, Moller M, Polymer, 46(3), 611 (2005)
Khajavi R, Abbasipour M, Sci. Iran., 19, 2029 (2012)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로