Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 28, 2019
Accepted May 7, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Selective synthesis of acetonitrile by reaction of ethanol with ammonia over Ni/Al2O3 catalyst
Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
Chshin@chungbuk.ac.kr
Korean Journal of Chemical Engineering, July 2019, 36(7), 1051-1056(6), 10.1007/s11814-019-0294-y
Download PDF
Abstract
A highly selective synthesis of acetonitrile was carried out by the reaction of ethanol with ammonia on a 10 wt% Ni/Al2O3 catalyst. The conversion of ethanol and selectivity to acetonitrile, ethylene, and monoethylamine were examined by varying experimental parameters such as ammonia partial pressure, reaction temperature, and space time. The increase in the ammonia partial pressure led to a considerable decrease in the conversion and small increase in the acetonitrile selectivity up to a molar ratio of NH3/ethanol of 3, followed by almost constant values. The partial reaction order of ethanol obtained by controlling the space time was one, while that of ammonia was negative, - 0.4. The deactivation behavior of the catalyst after 100 h on stream reaction at 230 °C was analyzed by X-ray photoelectron spectroscopy and temperature programmed oxidation of the catalyst used. The catalyst deactivation was attributed to the gradual formation of nickel carbonitride on the catalyst surface.
References
Galanov SI, Sidorova O, Gavrilenko MA, Frants O, Nekhoroshev V, Korolev YD, Egoshina A, Procedia Chemistry, 15, 14 (2015)
Hur JM, Coh BY, Lu L, Kwon HH, Lee HI, Catal. Lett., 69(3-4), 237 (2000)
Xie YL, Luo MF, Zhao JJ, React. Kinet. Catal. Lett., 89(1), 29 (2006)
Naik SP, Fernandes JB, Indian J. Chem. Technol., 5, 405 (1998)
Kim KN, Lane AM, J. Catal., 137, 127 (1992)
Tatsumi T, Kunitomi S, Yoshiwara J, Muramatsu A, Tominaga HO, Catal. Lett., 3, 223 (1989)
Badani MV, Delgass WN, J. Catal., 187(2), 506 (1999)
Hu Y, Cao J, Deng J, Cui B, Tan M, Li J, Zhang H, Reac. Kinet. Mech. Cat., 106, 127 (2012)
Zhang Y, Zhang Y, Feng C, Qiu C, Wen Y, Zhao J, Catal. Commun., 10, 1454 (2009)
Feng C, Zhang YC, Zhang YN, Wen YL, Zhao JQ, Catal. Lett., 141(1), 168 (2011)
Zhang D, Zhang YC, Wen YL, Hou KH, Zhao JQ, Chem. Eng. Res. Des., 89(10A), 2147 (2011)
Reddy BM, Manohar B, J. Chem. Soc., Chem. Commun., 234 (1993).
Kulkarni S, Rao RR, Subrahmanyam M, Rao AR, J. Chem. Soc., Chem. Commun., 273 (1994).
Rojas E, Guerrero-Perez MO, Banares MA, Catal. Lett., 143(1), 31 (2013)
Corker EC, Mentzel UV, Mielby J, Riisager A, Fehrmann R, Green Chem., 15, 928 (2013)
Park JH, Hong EP, An SH, Lim DH, Shin CH, Korean J. Chem. Eng., 34(10), 2610 (2017)
Chen LW, Choong CKS, Zhong ZY, Huang L, Wang Z, Lin JY, Int. J. Hydrog. Energy, 37(21), 16321 (2012)
Hong E, Bang S, Cho JH, Jung KD, Shin CH, Appl. Catal. A: Gen., 542, 146 (2017)
Cho JH, An SH, Chang TS, Shin CH, Catal. Lett., 146(4), 811 (2016)
Bartholomew CH, Appl. Catal. A: Gen., 212, 17 (2001)
Baiker A, Monti D, Fan YS, J. Catal., 88, 81 (1984)
Cho JH, Park JH, Chang TS, Seo G, Shin CH, Appl. Catal. A: Gen., 417, 313 (2012)
Papakonstantinou P, Zeze D, Klini A, McLaughlin J, Diamond Relat. Mater, 10, 1109 (2001)
Ronning C, Feldermann H, Merk R, Hofsass H, Reinke P, Thiele JU, Phys. Rev. B, 58, 2207 (1998)
Li X, Zhang J, Shen L, Ma Y, Lei W, Cui Q, Zou G, Appl. Phys. A, 94, 387 (2009)
Hur JM, Coh BY, Lu L, Kwon HH, Lee HI, Catal. Lett., 69(3-4), 237 (2000)
Xie YL, Luo MF, Zhao JJ, React. Kinet. Catal. Lett., 89(1), 29 (2006)
Naik SP, Fernandes JB, Indian J. Chem. Technol., 5, 405 (1998)
Kim KN, Lane AM, J. Catal., 137, 127 (1992)
Tatsumi T, Kunitomi S, Yoshiwara J, Muramatsu A, Tominaga HO, Catal. Lett., 3, 223 (1989)
Badani MV, Delgass WN, J. Catal., 187(2), 506 (1999)
Hu Y, Cao J, Deng J, Cui B, Tan M, Li J, Zhang H, Reac. Kinet. Mech. Cat., 106, 127 (2012)
Zhang Y, Zhang Y, Feng C, Qiu C, Wen Y, Zhao J, Catal. Commun., 10, 1454 (2009)
Feng C, Zhang YC, Zhang YN, Wen YL, Zhao JQ, Catal. Lett., 141(1), 168 (2011)
Zhang D, Zhang YC, Wen YL, Hou KH, Zhao JQ, Chem. Eng. Res. Des., 89(10A), 2147 (2011)
Reddy BM, Manohar B, J. Chem. Soc., Chem. Commun., 234 (1993).
Kulkarni S, Rao RR, Subrahmanyam M, Rao AR, J. Chem. Soc., Chem. Commun., 273 (1994).
Rojas E, Guerrero-Perez MO, Banares MA, Catal. Lett., 143(1), 31 (2013)
Corker EC, Mentzel UV, Mielby J, Riisager A, Fehrmann R, Green Chem., 15, 928 (2013)
Park JH, Hong EP, An SH, Lim DH, Shin CH, Korean J. Chem. Eng., 34(10), 2610 (2017)
Chen LW, Choong CKS, Zhong ZY, Huang L, Wang Z, Lin JY, Int. J. Hydrog. Energy, 37(21), 16321 (2012)
Hong E, Bang S, Cho JH, Jung KD, Shin CH, Appl. Catal. A: Gen., 542, 146 (2017)
Cho JH, An SH, Chang TS, Shin CH, Catal. Lett., 146(4), 811 (2016)
Bartholomew CH, Appl. Catal. A: Gen., 212, 17 (2001)
Baiker A, Monti D, Fan YS, J. Catal., 88, 81 (1984)
Cho JH, Park JH, Chang TS, Seo G, Shin CH, Appl. Catal. A: Gen., 417, 313 (2012)
Papakonstantinou P, Zeze D, Klini A, McLaughlin J, Diamond Relat. Mater, 10, 1109 (2001)
Ronning C, Feldermann H, Merk R, Hofsass H, Reinke P, Thiele JU, Phys. Rev. B, 58, 2207 (1998)
Li X, Zhang J, Shen L, Ma Y, Lei W, Cui Q, Zou G, Appl. Phys. A, 94, 387 (2009)