ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 13, 2019
Accepted May 15, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Mechanism of the simultaneous removal of nitrate and Ni(II) by Enterobacter sp. CC76 through mixotrophic denitrification processes

1Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, P. R. China 2Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, P. R. China 3China United Northwest Institute for Engineering Design and Research Co., Ltd. (CUCED), Xi’an 710077, P. R. China
-
Korean Journal of Chemical Engineering, July 2019, 36(7), 1140-1147(8), 10.1007/s11814-019-0298-7
downloadDownload PDF

Abstract

We studied the mechanism for the simultaneous removal of nitrate and Ni(II) by Enterobacter sp. CC76. Response surface methodology results showed that the maximum removal ratios of nitrate and Ni(II) were 95.02% and 75.99% under the following conditions: pH 7.37, 54.31mgㆍL-1 Fe(II), and 10.00mgㆍL-1 Ni(II). The mechanism of Ni(II) removal involved Fe-oxide adsorption and the increase of pH. In addition, meteorological chromatography analysis indicated that Ni(II) affected gas composition during denitrification. Scanning electron microscopy and X-ray photoelectron spectroscopy confirmed that Fe-oxide adsorption was the main contributor to Ni(II) removal. This study shows that Enterobacter sp. CC76 can enhance the adsorption of Ni(II) onto Fe-oxides while removing nitrate.

References

Ahmad HB, Abbas Y, Hussain M, Akhtar N, Ansari TM, Zuber M, Zia KM, Arain SA, Korean J. Chem. Eng., 31(2), 284 (2014)
Huang G, Fallowfield H, Guan H, Liu F, Water Air Soil Pollut., 223, 4029 (2012)
Huang TL, Guo L, Zhang HH, Su JF, Wen G, Zhang K, Bioresour. Technol., 196, 209 (2015)
Song ZF, An J, Fu GF, Yang XL, Aquaculture, 319, 188 (2011)
Zhou Z, Huang T, Yuan B, Liao X, J. Soil Contamination, 25, 89 (2016)
Xia S, Zhong F, Zhang Y, Li H, Yang X, J. Environ. Sci., 22, 257 (2019)
Di Capua F, Pirozzi F, Lens PNL, Esposito G, Chem. Eng. J., 362, 922 (2019)
Bertini I, Sigel A, Sigel H, J. Org. Chem., 659, 203 (2001)
Schmidt M, Goebeler M, J. Mol. Medicine, 89, 961 (2011)
Denkhaus E, Salnikow K, Crit. Rev. Oncol. Hematol., 42, 35 (2002)
Zambelli B, Uversky VN, Ciurli S, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1864, 1714 (2016).
Zambelli B, Ciurli S, Metal Ions in Life Sci., 13, 321 (2013)
Coman V, Robotin B, Ilea P, Resour. Conserv. Recycl., 73, 229 (2013)
Hoseinian FS, Rezai B, Kowsari E, Safari M, Miner. Eng., 119, 212 (2018)
Fu F, Wang Q, J. Environ. Manage., 92, 407 (2011)
Raval NP, Shah PU, Shah NK, J. Environ. Manage., 179, 1 (2016)
He TX, Xie DT, Ni JP, Li ZL, J. Hazard. Mater., 368, 594 (2019)
Zou G, Ylinen A, Capua FD, Papirio S, Lakaniemi AM, Puhakka J, Adv. Mater. Res., 825, 500 (2013)
Di Capua F, Milone I, Lakaniemi AM, van Hullebusch ED, Lens PNL, Esposito G, Bioresour. Technol., 238, 534 (2017)
Idhayachander R, Palanivelu K, J. Chem., 7, 1412 (2012)
Pandey P, Choubey S, Verma Y, Pandey M, Kamal S, Chandrashekhar K, Int. J. Environ. Res. Public Health, 4, 332 (2007)
Moosavirad SM, Sarikhani R, Shahsavani E, Mohammadi SZ, J. Water Chem. Technol., 37, 191 (2015)
Al-Gheethi AAS, Norli I, Lalung J, Azlan AM, Farehah ZAN, Kadir MOA, Clean Technologies Environ. Policy, 16, 137 (2014)
Quintelas C, Rocha Z, Silva B, Fonseca B, Figueiredo H, Tavares T, Chem. Eng. J., 152(1), 110 (2009)
Su JF, Cheng C, Huang TI, Ma F, Lu JS, Shao SC, J. Taiwan Institute Chem. Engineers, 66, 106 (2016)
Su JF, Guo DX, Huang TI, Lu JS, Bai XC, Hu XF, Environ. Eng. Sci., 35, 1228 (2018)
Qambrani NA, Jung SH, Yong SO, Yong SK, Oh SE, Environ. Sci. Pollut Res. Int., 20, 9084 (2013)
Komarek M, Antelo J, Kralova M, Veselska V, Cihalova S, et al., Chem. Geol., 493, 189 (2018)
Abigail M, Samuel MS, Chidambaram R, J. Taiwan Inst. Chem. Engineers, 49, 156 (2015)
Small TD, Warren LA, Ferris FG, Appl. Geochem., 16, 939 (2001)
Lee JH, Hur HG, J. Korean Soc. Appl. Biol. Chem., 57, 123 (2014)
Lee SW, J. Mater. Cycles Waste Manage., 15, 362 (2013)
Daughney CJ, Fakih M, Chatellier X, Geomicrobiol. J., 28, 11 (2011)
Hohmann C, Winkler E, Morin G, Kappler A, Environ. Sci. Technol., 44, 94 (2010)
Coup KM, Swedlund PJ, Chem. Geol., 398, 97 (2015)
Kiskira K, Papirio S, van Hullebusch ED, Esposito G, Environ. Sci. Pollut. Res., 24, 21323 (2017)
Barrow NJ, Gerth J, Brummer GW, Eur. J. Soil Sci., 40, 437 (2010)
Kim EJ, Lee CS, Chang YY, Chang YS, Appl. Mater. Interfaces, 5, 9628 (2013)
Qin QD, Wang QQ, Fu DF, Ma J, Chem. Eng. J., 172(1), 68 (2011)
Lei L, Zhang G, Lin J, Wang X, Wang S, Jia Y, Appl. Geochem., 98, 418 (2018)
Yusof AM, Malek NANN, J. Hazard. Mater., 162(2-3), 1019 (2009)
Yang KL, Zhou JS, Lou ZM, Zhou XR, Liu YL, Li YZ, Baig SA, Xu XH, Chem. Eng. J., 354, 577 (2018)
Li HS, Chen YH, Long JY, Li XW, Jiang DQ, Zhang P, Qi JY, Huang XX, Liu J, Xu RB, Gong J, J. Hazard. Mater., 338, 296 (2017)
Su J, Gao C, Huang T, Gao Y, Bai X, He L, Chemosphere, 222, 970 (2019)
Nesbitt HW, Legrand D, Bancroft GM, Phys. Chem. Miner., 27, 357 (2000)
Tamilselvan A, Balakumar S, Sakar M, Nayek C, Murugavel P, Saravana KK, Dalton Trans., 43, 5731 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로