ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 26, 2018
Accepted April 23, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Vertically aligned TiO2/ZnO nanotube arrays prepared by atomic layer deposition for photovoltaic applications

Department of Chemical Engineering, Dankook University, Yongin 16890, Korea 1Department of Materials Science and Engineering, Hallym University, Chuncheon 24252, Korea 2Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, Berlin 12489, Germany 3Center for Nanoparticle Research, Institute for Basic Science (IBS) and School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea
Korean Journal of Chemical Engineering, July 2019, 36(7), 1157-1163(7), 10.1007/s11814-019-0280-4
downloadDownload PDF

Abstract

Vertically aligned TiO2/ZnO nanotube (NT) arrays were developed for application to photoanodes in mesoscopic solar cells. By a two-step anodic oxidation, vertically aligned TiO2 NT arrays with highly ordered surface structure were prepared, followed by deposition of a ZnO shell with a precisely controlled thickness using atomic layer deposition (ALD). When applied to a photoanode of dye-sensitized solar cells (DSSCs), the photovoltage is gradually enhanced as the ZnO shell thickness of the TiO2/ZnO NT electrodes is increased. Furtheremore, the electron lifetime in photoanodes is significantly enhanced due to the ZnO shell, which is examined by open-circuit voltage decay (OCVD) measurement. Photocurrent density-voltage (J-V) curves under the dark condition and OCVD spectra reveal that a negative shift in TiO2 conduction band potential and an energy barrier effect owing to the ZnO shell concurrently contribute to the enhancement of VOC and electron lifetime.

References

Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ, Adv. Mater., 15(5), 353 (2003)
Zhang Z, Zhang L, Hedhili MN, Zhang H, Wang P, Nano Lett., 13, 14 (2013)
Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano Lett., 6, 215 (2006)
Zhu K, Neale NR, Miedaner A, Frank AJ, Nano Lett., 7, 69 (2007)
Zhu K, Vinzant TB, Neale NR, Frank AJ, Nano Lett., 7, 3739 (2007)
Kim JY, Lee KJ, Kang SH, Shin J, Sung YE, J. Phys. Chem. C, 115, 19979 (2011)
Kim JY, Lee KH, Shin J, Park SH, Kang JS, Han KS, Sung MM, Pinna N, Sung YE, Nanotechnology, 25, 504003 (2014)
Kim JY, Shin J, Kim D, Sung YE, Ko MJ, Isr. J. Chem., 55, 1034 (2015)
Kim JY, Kang JS, Shin J, Kim J, Han SJ, Park J, Min YS, Ko MJ, Sung YE, Nanoscale, 7, 83687 (2015)
Yadav HM, Kim JS, Pawar SH, Korean J. Chem. Eng., 33(7), 1989 (2016)
Chen Q, Xu D, J. Phys. Chem. C, 113, 6310 (2009)
Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR, J. Am. Chem. Soc., 125(2), 475 (2003)
Kim JY, Kang SH, Kim HS, Sung YE, Langmuir, 26(4), 2864 (2010)
Kang SH, Kim JY, Kim Y, Kim HS, Sung YE, J. Phys. Chem. C, 111, 9614 (2007)
Diamant Y, Chappel S, Chen SG, Melamed O, Zaban A, Coord. Chem. Rev., 248, 1271 (2004)
Diamant Y, Chen SG, Melamed O, Zaban A, J. Phys. Chem. B, 107(9), 1977 (2003)
Pinna N, Knez M, Atomic layer depositon of nanostructured materials, 2011, Wiley-VCH, ISBN:978.3-527-32797-3. 1st edition November 2011.
George SM, Chem. Rev., 110(1), 111 (2010)
Marichy C, Bechelany M, Pinna N, Adv. Mater., 24(8), 1017 (2012)
Selvaraj S, Moon H, Yun JY, Kim DH, Korean J. Chem. Eng., 33(12), 3516 (2016)
Ito S, Chen P, Comte P, Nazeeruddin MK, Liska P, Pechy P, Gratzel M, Prog. Photovolt. Res. Appl., 15, 603 (2007)
Ito S, Nazeeruddin MK, Liska P, Comte P, Charvet R, Pechy P, Jirousek M, Kay A, Zakeeruddin SM, Gratzel M, Prog. Photovolt. Res. Appl., 14, 589 (2006)
Kim JY, Yang J, Yu JH, Baek W, Lee CH, Son HJ, Hyeon T, Ko MJ, ACS Nano, 9, 11286 (2015)
Pattern No. 21-1272, JCPDS (1996).
Wu JM, Antonietti M, Gross S, Bauer M, Smarsly BM, ChemphysChem, 9, 748 (2008)
Chen P, Yin X, Que M, Yang Y, Que W, RSC Adv., 6, 57996 (2016)
McCafferty E, Wightman JP, Surf. Interface Anal., 26, 549 (1998)
Hagfeldt A, Boschloo G, Sun LC, Kloo L, Pettersson H, Chem. Rev., 110(11), 6595 (2010)
Ku Y, Huang YH, Chou YC, J. Mol. Catal. A-Chem., 342, 18 (2011)
He YM, Wang Y, Zhang LH, Teng BT, Fan MH, Appl. Catal. B: Environ., 168, 1 (2015)
Wu K, Yu Y, Shen K, Xia C, Wang D, Solar Energy, 94, 195 (2013)
Park NG, Kang MG, Kim KM, Ryu KS, Chang SH, Kim DK, van de Lagemaat J, Benkstein KD, Frank AJ, Langmuir, 20(10), 4246 (2004)
Manthina V, Baena JPC, Liu G, Agrios AG, J. Phys. Chem. C, 116, 23864 (2012)
Filippin AN, Macias-Montero M, Saghi Z, Idigoras J, Burdet P, et al., Sci. Rep., 7, 9621 (2017)
Quintana M, Edvinsson T, Hagfeldt A, Boschloo G, J. Phys. Chem. C, 111, 1035 (2007)
Lee MW, Kim JY, Son HJ, Kim JY, Kim B, Kim H, Lee DK, Kim K, Lee DH, Ko MJ, Sci. Rep., 5, 7711 (2015)
Kim JY, Kim JY, Lee DK, Kim B, Kim H, Ko MJ, J. Phys. Chem. C, 116, 22759 (2012)
Zaban A, Greenshtein M, Bisquert J, ChemphysChem, 4, 859 (2003)
Han L, Koide N, Chiba Y, Mitate T, Appl. Phys. Lett., 84, 2433 (2004)
Schlichthorl G, Huang SY, Sprague J, Frank AJ, J. Phys. Chem. B, 101(41), 8141 (1997)
Fisher AC, Peter LM, Ponomarev EA, Walker AB, Wijayantha KGU, J. Phys. Chem. B, 104(5), 949 (2000)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로