ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 13, 2019
Accepted May 21, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effects of regeneration conditions on sulfated CuSSZ-13 catalyst for NH3-SCR

1Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, P. R. China 2Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin 300350, P. R. China 3School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, P. R. China
wangjun@tju.edu.cn
Korean Journal of Chemical Engineering, August 2019, 36(8), 1249-1257(9), 10.1007/s11814-019-0307-x
downloadDownload PDF

Abstract

To understand the role of regeneration conditions on sulfur-poisoned Cu/SSZ-13 catalysts for NH3-SCR, the physicochemical characterizations and NOx conversions were investigated. The sulfur-poisoned Cu/SSZ-13 catalysts were treated at different conditions as a function of temperature and duration. TGA results revealed that regeneration at 500 °C only removed parts of sulfur spices and at 700 °C can completely remove all sulfur spices. The physical structural characterizations results illustrate that regeneration below 700 °C has no significant impact on CHA structure for Cu/SSZ-13 catalysts, while dealumination occurs on poisoned Cu/SSZ-13 when regeneration temperature is higher than 700 °C. EPR and H2-TPR results show that the sulfate decomposition and Cu migration reactions involved during regeneration and, as a result, the content of Cu2+ gradually increased as the extent of regeneration increased. The kinetics tests support that NOx conversion recovery is related to the content of Cu2+ increase during regeneration. Our study reveals that the optimum regeneration temperature is 700 °C, because severe dealumination at 750 °C inhibited Cu2+ amount increase.

References

Johnson T, SAE Int. J. Engines., 6, 699 (2013)
Forzatti P, Nova I, Tronconi E, Angew. Chem.-Int. Edit., 48, 8366 (2009)
Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF, J. Catal., 275(2), 187 (2010)
Beale AM, Gao F, Lezcano-Gonzalez I, Peden CHF, Szanyi J, Chem. Soc. Rev., 44, 7371 (2015)
Xu R, Zhang R, Liu N, Chen B, Qiao SZ, ChemCatChem., 7, 3842 (2016)
Xie LJ, Liu FD, Shi XY, Xiao FS, He H, Appl. Catal. B: Environ., 179, 206 (2015)
Zhang T, Qiu F, Chang H, Li X, Li J, Catal. Sci. Technol., 6, 6294 (2016)
Su W, Li Z, Peng Y, Li J, Phys. Chem. Chem. Phys., 17, 29142 (2015)
Beale AM, Lezcano-Gonzalez I, Slawinksi WA, Wragg DS, Chem. Commun., 52, 6170 (2016)
Chen Z, Fan C, Pang L, Ming SJ, Liu P, Li T, Appl. Catal. B: Environ., 237, 116 (2018)
Dahlin S, Lantto C, Englund J, Westerberg B, Regali F, Skoglundh M, Pettersson LJ, Catal. Today, 320, 72 (2019)
Su W, Li Z, Zhang Y, Meng C, Li J, Catal. Sci. Technol., 7, 1523 (2017)
Hammershoi PS, Jangjou Y, Epling WS, Jensen AD, Janssens TVW, Appl. Catal. B: Environ., 226, 38 (2018)
Jangjou Y, Do Q, Gu Y, Lim LG, Sun H, Wang D, Kumar A, Li J, Grabow LC, Epling WS, ACS Catal., 8, 1325 (2018)
Hammershoi PS, Jensen AD, Janssens TVW, Appl. Catal. B: Environ., 238, 104 (2018)
Wang C, Wang J, Wang JQ, Yu T, Shen MQ, Wang WL, Li W, Appl. Catal. B: Environ., 204, 239 (2017)
Shen MQ, Li XH, Wang JQ, Wang C, Wang J, Ind. Eng. Chem. Res., 57(10), 3501 (2018)
Luo JY, Gao F, Kamasamudram K, Currier N, Peden CHF, Yezerets A, J. Catal., 348, 291 (2017)
Treacy MMJ, Higgins JB, in Collection of simulated xrd powder patterns for zeolites (fifth edition), Elsevier Science B.V., Amsterdam (2007).
Yu H, Cheng L, Yin J, Yan S, Liu K, Zhang F, Xu B, Li L, Food Sci. Nutr., 1, 273 (2013)
Peng C, Liang J, Peng HG, Yan R, Liu WM, Wang Z, Wu P, Wang X, Ind. Eng. Chem. Res., 57(44), 14967 (2018)
Gao F, Walter ED, Washton NM, Szanyi J, Peden CHF, ACS Catal., 3, 2083 (2013)
Borfecchia E, Beato P, Svelle S, Olsbye U, Lamberti C, Bordiga S, Chem. Soc. Rev., 47, 8097 (2018)
Gao F, Wang Y, Washton NM, Kollar M, Szanyi J, Peden CHF, ACS Catal., 5, 6780 (2015)
Luo JY, Wang D, Kumar A, Li JH, Kamasamudram K, Currier N, Yezerets A, Catal. Today, 267, 3 (2016)
Kwak JH, Zhu H, Lee JH, Peden CHF, Szanyi J, Chem. Commun., 48, 4758 (2012)
Shen MQ, Zhang Y, Wang JQ, Wang C, Wang J, J. Catal., 358, 277 (2018)
Kwak JH, Tran D, Burton SD, Szanyi J, Lee JH, Peden CHF, J. Catal., 287, 203 (2012)
Schmieg SJ, Oh SH, Kim CH, Brown DB, Lee JH, Peden CHF, Kim DH, Catal. Today, 184(1), 252 (2012)
Kim YJ, Lee JK, Min KM, Hong SB, Nam IS, Cho BK, J. Catal., 311, 447 (2014)
Wijayanti K, Xie KP, Kumar A, Kamasamudram K, Olsson L, Appl. Catal. B: Environ., 219, 142 (2017)
Wang D, Gao F, Peden CHF, Li J, Kamasamudram K, Epling WS, ChemCatChem., 6, 1579 (2014)
Ma L, Cheng YS, Cavataio G, McCabe RW, Fu LX, Li JH, Chem. Eng. J., 225, 323 (2013)
Wang C, Wang J, Wang J, Wang Z, Chen Z, Li X, Shen M, Yan W, Kang X, Catal., 8, 593 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로