ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 17, 2019
Accepted May 21, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Enhanced adsorption of Orange II on bagasse-derived biochar by direct addition of CTAB

1Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China 2Henan Key Laboratory of Water Environment Simulation and Treatment, North China University of Water Resources and Electric Power, Zhengzhou 450011, China 3School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
Korean Journal of Chemical Engineering, August 2019, 36(8), 1274-1280(7), 10.1007/s11814-019-0304-0
downloadDownload PDF

Abstract

Surface charge properties of an adsorbent always play an important role for the removal of contaminants from water. A cationic surfactant hexadecyl tri-methyl ammonium bromide (CTAB) was involved into adsorptive removal of Orange II (ORII) by bagasse biochars to realize an in-situ modification and an enhanced adsorption capability. Adsorption capacity of biochar (BC600) improved significantly from 1.66mg/g in the absence of CTAB to 4.42mg/g in the presence of 2.0mg/L CTAB. A more hydrophobic surface of bagasse biochar was favorable for the dye uptake in the presence of CTAB. Linear pseudo-second-order kinetic model fitted the kinetics data better at three pH conditions than pseudo-first-order kinetic model, whether in the presence and absence of CTAB. Both nonlinear pseudo-first-order and pseudo-second-order kinetic models were suitable to describe the experimental data. The maximal adsorption capacity in the absence of CTAB was very limited (41.4mg/g), while the adsorption isotherm curve in the presence of CTAB was almost linear, indicating a strong adsorption capability due to the introduction of CTAB. Direct addition of CTAB into wastewater is a potential technique for the enhanced removal of negatively-charged pollutants by bagasse biochar.

References

Rai HS, Bhattacharyya MS, Singh J, Bansal TK, Vats P, Crit. Rev. Env. Sci. Technol., 35(3), 219 (2007)
Verma AK, Dash RR, Bhunia P, J. Environ. Manage., 93(1), 154 (2012)
Alventosa-deLara E, Barredo-Damas S, Alcaina-Miranda MI, Iborra-Clar MI, J. Hazard. Mater., 209-210, 192 (2012)
Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios L, Mantzavinos D, J. Chem. Technol. Biotechnol., 83(6), 769 (2008)
Markovska L, Meshko V, Noveski V, Korean J. Chem. Eng., 18(2), 190 (2001)
Qu JH, J. Environ. Sci., 20, 1 (2008)
Ali I, Asim M, Khan TA, J. Environ. Manage., 113, 170 (2012)
Demirbas A, J. Hazard. Mater., 157(2-3), 220 (2008)
Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M, Chemosphere, 58(8), 1049 (2005)
Auta M, Hameed BH, Chem. Eng. J., 237, 352 (2014)
Mohan D, Sarswat A, Ok YS, Pittman CU, Bioresour. Technol., 160, 191 (2014)
Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS, Chemosphere, 99, 19 (2014)
Lehmann J, Nature, 447, 143 (2007)
Atkinson CJ, Fitzgerald JD, Hipps NA, Plant Soil, 337, 1 (2010)
Tran HN, You SJ, Chao HP, Korean J. Chem. Eng., 34(6), 1708 (2017)
Chen BL, Chen ZM, Chemosphere, 76, 127 (2009)
Abdelhafez AA, Li JH, J. Taiwan Inst. Chem. E., 61, 367 (2016)
Lee JW, Hawkins B, Day DM, Reicosky DC, Energy Environ. Sci., 3, 1695 (2010)
Xie MX, Chen W, Xu ZY, Zheng SR, Zhu DQ, Environ. Pollut., 186, 187 (2014)
Inyang M, Gao B, Yao Y, Xue YW, Zimmerman AR, Pullammanappallil P, Cao XD, Bioresour. Technol., 110, 50 (2012)
Zhou YM, Gao B, Zimmerman AR, Chen H, Zhang M, Cao XD, Bioresour. Technol., 152, 538 (2014)
Hao XL, Liu H, Zhang GS, Zou H, Zhang YB, Zhou MM, Gu YC, Appl. Clay Sci., 55, 177 (2012)
Li GT, Zhu WY, Zhang CY, Zhang S, Liu LL, Zhu LF, Zhao WG, Bioresour. Technol., 206, 16 (2016)
Zhang RD, Zhang JH, Zhang XN, Dou CC, Han RP, J. Taiwan Inst. Chem. E, 45, 2578 (2014)
Zhao BL, Shang Y, Xiao W, Dou CC, Han RP, J. Environ. Chem. Eng., 2, 40 (2014)
Guo JZ, Chen SW, Liu L, Li B, Yang P, Zhang LJ, Feng YL, J. Colloid Interface Sci., 382, 61 (2012)
Papari F, Sahebi S, Kouhgardi E, Behresi R, Asgari G, Jorfi S, Ramavandi B, Desalin. Water Treat., 97, 285 (2017)
Chatterjee S, Lee DS, Lee MW, Woo SH, Bioresour. Technol., 100(11), 2803 (2009)
Ramavandi B, Farjadfard S, Ardjmand M, J. Environ. Chem. Eng., 2, 1776 (2014)
Li G, Zhu W, Zhu L, Chai X, Korean J. Chem. Eng., 33(7), 2215 (2016)
Lagergren S, Kungliga Svenska Vetenskapsakademiens. Handlinga, 24, 1 (1898).
Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
Ramavandi B, Asgari G, Process Saf. Environ. Protect., 116, 61 (2018)
Fooladvand M, Ramavandi B, Indian J. Chem. Technol., 22(5), 183 (2015)
Teixido M, Pignatello JJ, Beltran JL, Granados M, Peccia J, Environ. Sci. Technol., 45, 10020 (2011)
Zheng H, Wang ZY, Zhao J, Stephen H, Xing BS, Environ. Pollut., 181, 60 (2013)
Jing XR, Wang YY, Liu WJ, Wang YK, Jiang H, Chem. Eng. J., 248, 60 (2013)
Langmuir I, J. Am. Chem. Soc., 38, 2221 (1916)
Freundlich HMF, J. Phys. Chem., 57, 385 (1906)
Asgari G, Ramavandi B, Rasuli L, Ahmadi M, Desalin. Water Treat., 51, 6009 (2013)
MaryamShahverdi C, Kouhgardi E, Ramavandi B, Data Brief, 9, 163 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로