ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 11, 2019
Accepted June 12, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

NH3-induced removal of NOx from a flue gas stream by silent discharge ozone generation in a double reactor system

School of Environmental Engineering, University of Seoul, Seoul 02504, Korea 1Department of Environmental Engineering, Sunchon National University, Suncheon 57922, Korea 2Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Korea 3Thermochemical Energy System R&D Group, Korea Institute of Industrial Technology, Cheonan 31056, Korea 4Department of Bioenvironmental & Chemical Engineering, Chosun College of Science & Technology, Gwangju 501-744, Korea
catalica@uos.ac.kr
Korean Journal of Chemical Engineering, August 2019, 36(8), 1291-1297(7), 10.1007/s11814-019-0325-8
downloadDownload PDF

Abstract

NOx, a generic term for the nitrogen oxides generated from combustion in the presence of nitrogen, is a serious threat to human health. This study examined the removal of NOx using ammonia (NH3) and ozone produced using a silent discharge method. The effects of temperature and residence time on NOx removal with NH3 injection in a double reactor system were investigated. An increase in temperature resulted in higher levels of O3 decomposition, whereas the maximum particle formation in the form of ammonium nitrate (NH4NO3) was achieved when both reactors were kept at 180 °C. NH3 and O3 injection in large quantities and NO in smaller amounts with a residence time of 10.2 s resulted in the maximum particulate formation. In contrast, when an excess of NH3 was supplied, it resulted in N2O formation due to the formation of NH2 radicals generated from a reaction of NO2 with NH3. In addition, 100% NO removal was achieved regardless of the residence time. Kinetic simulations indicated the possibility of moisture being the limiting reactant.

References

Xiong Y, Zeng Y, Cai W, Zhang S, Ding J, Zhong Q, J. Ind. Eng. Chem., 65, 380 (2018)
Long XI, Duan BB, Cao HX, Jia ML, Wu LA, J. Ind. Eng. Chem., 62, 217 (2018)
Wang H, Li X, Chen P, Chen M, Zheng X, Chem. Commun., 49, 9353 (2013)
Roy S, Baiker A, Chem. Rev., 109(9), 4054 (2009)
Fan Y, Ling W, Huang B, Dong L, Yu C, Xi H, J. Ind. Eng. Chem., 56, 108 (2017)
Shelef M, McCabe RW, Catal. Today, 62(1), 35 (2000)
Garin F, Appl. Catal. A: Gen., 222(1-2), 183 (2001)
Tsukamoto S, Namihira T, Pulsed Power Conference, Monterey, CA, 1330 (1999).
Chae JO, J. Electrostatics, 57, 251 (2003)
Jo JO, Mok YS, Appl. Chem. Eng., 29, 92 (2018)
Fujishima H, Takekoshi K, Kuroki T, Tanaka A, Otsuka K, Okubo M, Appl. Energy, 111, 394 (2013)
Kuroki T, Takahashi M, Okubo M, Yamamoto T, IEEE Trans. Ind. Appl., 38, 1204 (2002)
Tsukamoto S, Namihira T, Wang D, Katsuki S, Akiyama H, Nakashima E, Digest of Technical Papers 12th IEEE International Pulsed Power Conference (Cat No99CH36358), 2, 1330 (1999).
Lin H, Gao X, Luo ZY, Guan SP, Cen KF, Huang Z, J. Environ. Sci., 16, 462 (2004)
Mizuno A, Shimizu R, Chakrabarti A, Dascalescu L, Furuta S, IEEE Trans. Ind. Appl., 31, 957 (1995)
Chae JO, J. Electrostatics, 57, 251 (2003)
Yamamoto Y, Yamamoto H, Takada D, Kuroki T, Fujishima H, Okubo M, Ozone: Sci. Eng., 38, 211 (2016)
Park HW, Uhm SH, Appl. Chem. Eng., 28(6), 607 (2017)
J. S. Cha, J.W. Park, B. Jeong, H.D. Kim, S. S. Park and M.C. Shin, Appl. Chem. Eng., 28, 576 (2017)
Kazuo O, Hironobu K, Kohei I, Ibaraki H, J. Appl. Phys., 95, 3928 (2004)
Guan B, Lin H, Cheng Q, Huang Z, Ind. Eng. Chem. Res., 50(9), 5401 (2011)
Cha MS, Song YH, Lee JO, Kim SJ, nt. J. Plasma Environ. Sci. Technol., 1, 28 (2007)
Kitayama J, Kuzumoto M, J. Phys. D-Appl. Phys., 30, 2453 (1997)
Nishimura K, Suzuki N, J. Nuclear Sci. Technol., 18, 878 (1981)
Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Atmos. Chem. Phys., 4, 1461 (2004)
Kim DJ, Choi Y, Kim KS, Plasma Chem. Plasma Process., 21(4), 625 (2001)
Feick G, Hainer RM, J. Am. Chem. Soc., 76, 5860 (1954)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로