Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 29, 2019
Accepted May 20, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Biodegradation of tetrachloroethylene by a newly isolated aerobic Sphingopyxis ummariensis VR13
Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P. O. Box 33535-111, Tehran, Iran 1Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 33535-111, Tehran, Iran
shokrollahzadeh@irost.ir
Korean Journal of Chemical Engineering, August 2019, 36(8), 1305-1312(8), 10.1007/s11814-019-0303-1
Download PDF
Abstract
Chlorinated aliphatic solvents are major sources of groundwater and soil contamination. In this study, an aerobic bacterial strain, Sphingopyxis ummariensis VR13, which has been newly isolated from petrochemical wastewater sludge, was used for the dechlorination of PCE in relatively high concentrations. The addition of a co-substrate as glucose and yeast extract enhanced the dechlorination of PCE. An adaptation of the bacterial cells to PCE resulted in a significant increase in the PCE degradation yield (62.9-39.4%) at relatively high initial PCE concentrations (0.4-5 mM). The adapted cells achieved the highest biodegradation yield (64.8%) in 1.2mM. However, the maximum dechlorination percentage (41.6%) was measured in lower PCE concentration. The kinetic studies showed that PCE degradation was associated with the biomass growth because a higher removal of PCE (64.8%) occurred in a higher cell density. The degradation kinetics of PCE was properly fitted by Monod-like equation with the specific degradation rate of 7.2mmol PCE (g biomass) -1d -1, which was even faster than the reported anaerobic bacteria at this concentration. This strain can be used in the aerobic degradation of PCE.
Keywords
References
Doucette WJ, Chard JK, Fabrizius H, Crouch C, Petersen MR, Carlsen TE, Chars BK, Gorder K, Environ. Sci. Technol., 41, 2505 (2007)
Janulewicz PA, Killiany RJ, White RF, Martin BM, Winter MR, Weinberg JM, Winter M, Martin B, Aschengrau A, Neurotoxicol. Teratol., 38, 13 (2013)
Ye L, Fei L, Honghan C, Jinhua S, Yufan W, Acta Geolog. Sinica, 82, 911 (2008)
Tiehm A, Schmidt KR, Curr. Opin. Biotechnol., 22, 415 (2011)
Dong Y, Butler EC, Philp RP, Krumholz LR, Biodegradation, 22, 431 (2011)
Futagami T, Goto M, Furukawa K, Chem. Rec., 8, 1 (2008)
Doherty RE, Environ. Forensics, 1, 69 (2000)
Miguet M, Goetz V, Plantard G, Jaeger Y, Ind. Eng. Chem. Res., 54(40), 9813 (2015)
Linek V, Sinkule J, Janda V, Water Res., 32, 1264 (1998)
Gil A, Elmchaouri A, El Mouzdahir Y, Korili S, Adsorp. Sci. Technol., 33, 355 (2015)
Grzechulska-Damszel J, Grzeskowiak M, Przepiorski J, Morawski A, Int. J. Environ. Res., 8, 347 (2014)
Zheng F, Gao B, Sun Y, Shi X, Xu H, Wu J, Gao Y, Chem. Eng. J., 2016, 283, 595 (283)
Dolinova I, Strojsova M, Cernik M, Nemecek J, Machackova J, Sevcu A, Environ. Sci. Pollut. Res., 24, 13262 (2017)
Yoshikawa M, Zhang M, Toyota K, Water, Air, Soil Pollut., 228, 25 (2017)
Lee J, Lee TK, J. Microbiol. Biotechnol., 26, 120 (2016)
Mattes TE, Alexander AK, Coleman NV, FEMS Microbiol., 34, 445 (2010)
Ryoo D, Shim H, Canada K, Barbieri P, Wood TK, Nature Biotechnol., 18, 775 (2000)
Shim H, Ryoo D, Barbieri P, Wood TK, Appl. Microbiol. Biotechnol., 56(1-2), 265 (2001)
Yoshikawa M, Zhang M, Toyota K, Microb. Environ., 23, 188 (2017)
Tabernacka A, Zborowska E, Pogoda K, Zoladek M, Environ. Technol., 40(4), 470 (2019)
Pazarlioglu NK, Telefoncu A, Proc. Biochem., 40, 1807 (2005)
Gonzalez G, Herrera G, Garcia MT, Pena M, Bioresour. Technol., 80(2), 137 (2001)
Shokrollahzadeh S, Azizmohseni F, Golmohamad F, Adv. Environ. Sci. Technol., 1, 1 (2015)
Sedighi M, Zamir SM, Vahabzadeh F, J. Environ. Manage., 165, 53 (2016)
Yu J, Cai W, Cheng Z, Chen J, J. Environ. Sci., 26, 1108 (2014)
Aranda C, Godoy F, Becerra J, Barra R, Martinez M, Biodegradation, 14, 265 (2003)
Gaza S, Schmidt KR, Weigold P, Heidinger M, Tiehm A, Water Res., 151, 343 (2019)
Fathepure BZ, Boyd SA, J. Appl. Environ. Microbiol., 54, 2976 (1988)
Shen H, Sewell GW, Environ. Sci. Technol., 39, 9286 (2005)
Zhang Y, Tay JH, Biochem. Eng. J., 106, 1 (2016)
Li Y, Li B, Wang CP, Fan JZ, Sun HW, Int. J. Mol. Sci., 15(5), 9134 (2014)
Bhatt P, Kumar MS, Mudliar S, Chakrabarti T, Crit. Rev. Environ. Sci. Technol., 37, 165 (2007)
Landa AS, Sipkema EM, Weijma J, Beenackers A, Dolfing J, Janssen DB, J. Appl. Environ. Microbiol., 60, 3368 (1994)
Chang HL, Alvarezcohen L, Biotechnol. Bioeng., 45(5), 440 (1995)
Fan S, Scow KM, J. Appl. Environ. Microbiol., 59, 1911 (1993)
Humphries JA, Ashe AMH, Smiley JA, Johnston CG, Can. J. Microbiol., 51, 433 (2005)
Nijenhuis I, Andert J, Beck K, Kastner M, Diekert G, Richnow HH, J. Appl. Environ. Microbiol., 71, 3413 (2005)
Suyama A, Iwakiri R, Kai K, Tokunaga T, Sera N, Furukawa K, Biosci. Biotechnol. Biochem., 65, 1474 (2001)
Chen YM, Lin TF, Huang C, Lin JC, Chemosphere, 72, 1671 (2008)
DiSpirito AA, Gulledge J, Shiemke AK, Murrell JC, Lidstrom ME. Krema CL, Biodegradation, 2, 151 (1991)
Lontoh S, DiSpirito AA, Semrau JD, Arch. Microbiol., 171, 301 (1999)
Shukla AK, Vishwakarma P, Upadhyay SN, Tripathi AK, Prasana HC, Dubey SK, Bioresour. Technol., 100(9), 2469 (2009)
Shukla AK, Vishwakarma P, Singh RS, Upadhyay SN, Dubey SK, Bioresour. Technol., 101(7), 2126 (2010)
Li H, Zhang SY, Wang XL, Yang J, Gu JD, Zhu RL, Wang P, Lin KF, Liu YD, Environ. Technol., 36, 667 (2015)
Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, Murrell JC, Nat. Protoc., 2, 860 (2007)
Yoshikawa M, Zhang M, Kurisu F, Toyota K, Water, Air, Soil Pollut., 228, 418 (2017)
Janulewicz PA, Killiany RJ, White RF, Martin BM, Winter MR, Weinberg JM, Winter M, Martin B, Aschengrau A, Neurotoxicol. Teratol., 38, 13 (2013)
Ye L, Fei L, Honghan C, Jinhua S, Yufan W, Acta Geolog. Sinica, 82, 911 (2008)
Tiehm A, Schmidt KR, Curr. Opin. Biotechnol., 22, 415 (2011)
Dong Y, Butler EC, Philp RP, Krumholz LR, Biodegradation, 22, 431 (2011)
Futagami T, Goto M, Furukawa K, Chem. Rec., 8, 1 (2008)
Doherty RE, Environ. Forensics, 1, 69 (2000)
Miguet M, Goetz V, Plantard G, Jaeger Y, Ind. Eng. Chem. Res., 54(40), 9813 (2015)
Linek V, Sinkule J, Janda V, Water Res., 32, 1264 (1998)
Gil A, Elmchaouri A, El Mouzdahir Y, Korili S, Adsorp. Sci. Technol., 33, 355 (2015)
Grzechulska-Damszel J, Grzeskowiak M, Przepiorski J, Morawski A, Int. J. Environ. Res., 8, 347 (2014)
Zheng F, Gao B, Sun Y, Shi X, Xu H, Wu J, Gao Y, Chem. Eng. J., 2016, 283, 595 (283)
Dolinova I, Strojsova M, Cernik M, Nemecek J, Machackova J, Sevcu A, Environ. Sci. Pollut. Res., 24, 13262 (2017)
Yoshikawa M, Zhang M, Toyota K, Water, Air, Soil Pollut., 228, 25 (2017)
Lee J, Lee TK, J. Microbiol. Biotechnol., 26, 120 (2016)
Mattes TE, Alexander AK, Coleman NV, FEMS Microbiol., 34, 445 (2010)
Ryoo D, Shim H, Canada K, Barbieri P, Wood TK, Nature Biotechnol., 18, 775 (2000)
Shim H, Ryoo D, Barbieri P, Wood TK, Appl. Microbiol. Biotechnol., 56(1-2), 265 (2001)
Yoshikawa M, Zhang M, Toyota K, Microb. Environ., 23, 188 (2017)
Tabernacka A, Zborowska E, Pogoda K, Zoladek M, Environ. Technol., 40(4), 470 (2019)
Pazarlioglu NK, Telefoncu A, Proc. Biochem., 40, 1807 (2005)
Gonzalez G, Herrera G, Garcia MT, Pena M, Bioresour. Technol., 80(2), 137 (2001)
Shokrollahzadeh S, Azizmohseni F, Golmohamad F, Adv. Environ. Sci. Technol., 1, 1 (2015)
Sedighi M, Zamir SM, Vahabzadeh F, J. Environ. Manage., 165, 53 (2016)
Yu J, Cai W, Cheng Z, Chen J, J. Environ. Sci., 26, 1108 (2014)
Aranda C, Godoy F, Becerra J, Barra R, Martinez M, Biodegradation, 14, 265 (2003)
Gaza S, Schmidt KR, Weigold P, Heidinger M, Tiehm A, Water Res., 151, 343 (2019)
Fathepure BZ, Boyd SA, J. Appl. Environ. Microbiol., 54, 2976 (1988)
Shen H, Sewell GW, Environ. Sci. Technol., 39, 9286 (2005)
Zhang Y, Tay JH, Biochem. Eng. J., 106, 1 (2016)
Li Y, Li B, Wang CP, Fan JZ, Sun HW, Int. J. Mol. Sci., 15(5), 9134 (2014)
Bhatt P, Kumar MS, Mudliar S, Chakrabarti T, Crit. Rev. Environ. Sci. Technol., 37, 165 (2007)
Landa AS, Sipkema EM, Weijma J, Beenackers A, Dolfing J, Janssen DB, J. Appl. Environ. Microbiol., 60, 3368 (1994)
Chang HL, Alvarezcohen L, Biotechnol. Bioeng., 45(5), 440 (1995)
Fan S, Scow KM, J. Appl. Environ. Microbiol., 59, 1911 (1993)
Humphries JA, Ashe AMH, Smiley JA, Johnston CG, Can. J. Microbiol., 51, 433 (2005)
Nijenhuis I, Andert J, Beck K, Kastner M, Diekert G, Richnow HH, J. Appl. Environ. Microbiol., 71, 3413 (2005)
Suyama A, Iwakiri R, Kai K, Tokunaga T, Sera N, Furukawa K, Biosci. Biotechnol. Biochem., 65, 1474 (2001)
Chen YM, Lin TF, Huang C, Lin JC, Chemosphere, 72, 1671 (2008)
DiSpirito AA, Gulledge J, Shiemke AK, Murrell JC, Lidstrom ME. Krema CL, Biodegradation, 2, 151 (1991)
Lontoh S, DiSpirito AA, Semrau JD, Arch. Microbiol., 171, 301 (1999)
Shukla AK, Vishwakarma P, Upadhyay SN, Tripathi AK, Prasana HC, Dubey SK, Bioresour. Technol., 100(9), 2469 (2009)
Shukla AK, Vishwakarma P, Singh RS, Upadhyay SN, Dubey SK, Bioresour. Technol., 101(7), 2126 (2010)
Li H, Zhang SY, Wang XL, Yang J, Gu JD, Zhu RL, Wang P, Lin KF, Liu YD, Environ. Technol., 36, 667 (2015)
Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, Murrell JC, Nat. Protoc., 2, 860 (2007)
Yoshikawa M, Zhang M, Kurisu F, Toyota K, Water, Air, Soil Pollut., 228, 418 (2017)