Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 25, 2019
Accepted May 1, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Optimization of inhibitive action of sodium molybdate (VI) for corrosion of carbon steel in saline water using response surface methodology
Department of Chemical Engineering, University of Technology, Baghdad, Iraq 1Department of Chemical Engineering, College of Engineering, University of Diyala, Diyala, Iraq
aneesdr@gmail.com
Korean Journal of Chemical Engineering, August 2019, 36(8), 1350-1359(10), 10.1007/s11814-019-0291-1
Download PDF
Abstract
The performance of sodium molybdate (Na2MoO4) (VI) as a corrosion inhibitor for medium carbon steel corrosion in saline water containing nitrate and chloride ions was studied at various inhibitor concentrations, temperatures, exposure times and rotational velocities. Mass loss and electrochemical techniques were used to evaluate the corrosion rates. The individual and interactive effects of these four parameters were optimized for minimum response of corrosion rate using central composite design (CCD) with response surface methodology (RSM). Nonlinear regression strategy in light of Gauss-Newton technique was utilized for modeling and optimization of the corrosion inhibition experiments. Second-order polynomial model was suggested to predict the corrosion rates as a function of four variables. The individual effect of temperature on corrosion rate was higher than the individual effects of inhibitor concentration, exposure time and rotational velocity, respectively. The interaction effects of independents variables were also addressed. Open circuit potential measurements were used as a significant way to gain information about the behavior of steel corrosion. Steady state potential was reached after one hour of immersion time. Mass loss results were in a good agreement with potentiodynamic polarization technique. Optimum inhibition efficiency was 95.9% at optimum operating conditions. Polarization plots revealed that the inhibitor acts as the anodic-type inhibitor.
Keywords
References
Oluyemi D, Oluwole O, Adewuyi B, Mater. Res., 14, 135 (2011)
Oluwaseun A, Simeon I, Inter. Jr. Eng. Res. Gen. Sci., 3, 1141 (2015)
Ghareba S, Omanovic S, Corrosion Sci., 52, 2113 (2010)
Khadom A, Yaro A, Kadum A, AlTaie A, Musa A, Am. J. Appl. Sci., 6, 1409 (2009)
Khadom A, Hameed K, Int. J. Chem. Technol., 4, 17 (2012)
Mahmood A, Khadom A, J. Fail. Anal. Preven., 16, 1071 (2016)
Fadhil A, Khadom A, Liu H, Fu C, Wang J, Fadhil N, Mahood H, J. Mol. Liq., 276, 503 (2019)
Ahmed S, Ali W, Khadom A, J. Bio-and Tribo-Corrosion, 5, 15 (2019)
Trela J, Scendo M, Ochrona Przed Korozia, 55, 224 (2012)
Khadom A, Abod B, Mahood H, Kadhum A, J. Fail. Anal. Prev., 18, 1300 (2018)
Zhao X, Yang J, Fan X, Appl. Mech. Mater., 44/47, 4066 (2011)
Trela J, Chat M, Scendo M, CHEMIK, 69, 592 (2015)
Joanna T, Milena C, Mieczystaw S, CHEMIK, 69, 599 (2015)
Silva D, Mirapalheta A, Martinez-Huitle C, Tonholo J, Int. J. Eng. Technol., 14, 113 (2014)
Bueno G, Taqueda M, De Melo H, Guedes IC, Brazilian J. Chem. Eng., 32, 177 (2015)
Bingol D, Zor S, Corrosion, 69, 462 (2013)
Nikrooz B, Ebrahimifar H, Zandrahimi M, Indian J. Chem. Technol., 24, 162 (2017)
Granato D, De Araujo Calado V, Jarvis B, Food Res. International, 55, 149 (2014)
Deniz B, Sibel Z, Corrosion, 69, 467 (2013)
Khadom A, Rashid K, World J. Eng., 15/3, 388 (2018)
Tarantino L, Design and Analysis of Industrial Experiments, Tetra Pak (2010).
Marcus P, Mansfeld F, Analytical Methods in Corrosion Science and Engineering, 10th Ed., Taylor and Francis Group, New York (2006).
Khadom A, Korean J. Chem. Eng., 30, 2204 (2013)
Wu CJ, Michael S, Experiments: Planning, Analysis and Optimization, 2nd Ed., John Wiley New York, USA (2009).
Musa AY, Kadhum AA, Mohamad AB, Daud AR, Takriff MS, Kamarudin SK, Corrosion Sci., 51, 2393 (2009)
Yaro AS, Al-Jendeel H, Khadom AA, Desalination, 270(1-3), 193 (2011)
Rashid K, Khadom A, Anti-Corrosion Methods and Materials, 65, 514 (2018).
Cedeno M, Vera L, Pineda T, J. Phys.: Conf. Series, 786 (2017).
Zhao L, He Y, Deng X, Yang G, Li W, Liang J, Tang Q, Molecules, 17, 3618 (2012)
Thirumalaikumarasamy D, Balasubramanian V, Sabari S, J. Magnesium Alloys, 5, 133 (2017)
Musa A, Kadhum A, Mohamad A, Daud A, Takriff M, Kamarudin S, Corrosion Sci., 51, 2393 (2009)
Yaro A, Kahdom A, Int. J. Surf. Sci. Eng., 4, 438 (2010)
Uhlig H, Winston R, Corrosion and Corrosion Control, 4th Ed., Wiley (2008).
El Din AS, Mohammed R, Haggag H, Desalination, 114, 95 (1997)
De Souza F, Corrosion Sci., 51, 642 (2009)
Oluwaseun A, Simeon I, Inter. Jr. Eng. Res. Gen. Sci., 3, 1141 (2015)
Ghareba S, Omanovic S, Corrosion Sci., 52, 2113 (2010)
Khadom A, Yaro A, Kadum A, AlTaie A, Musa A, Am. J. Appl. Sci., 6, 1409 (2009)
Khadom A, Hameed K, Int. J. Chem. Technol., 4, 17 (2012)
Mahmood A, Khadom A, J. Fail. Anal. Preven., 16, 1071 (2016)
Fadhil A, Khadom A, Liu H, Fu C, Wang J, Fadhil N, Mahood H, J. Mol. Liq., 276, 503 (2019)
Ahmed S, Ali W, Khadom A, J. Bio-and Tribo-Corrosion, 5, 15 (2019)
Trela J, Scendo M, Ochrona Przed Korozia, 55, 224 (2012)
Khadom A, Abod B, Mahood H, Kadhum A, J. Fail. Anal. Prev., 18, 1300 (2018)
Zhao X, Yang J, Fan X, Appl. Mech. Mater., 44/47, 4066 (2011)
Trela J, Chat M, Scendo M, CHEMIK, 69, 592 (2015)
Joanna T, Milena C, Mieczystaw S, CHEMIK, 69, 599 (2015)
Silva D, Mirapalheta A, Martinez-Huitle C, Tonholo J, Int. J. Eng. Technol., 14, 113 (2014)
Bueno G, Taqueda M, De Melo H, Guedes IC, Brazilian J. Chem. Eng., 32, 177 (2015)
Bingol D, Zor S, Corrosion, 69, 462 (2013)
Nikrooz B, Ebrahimifar H, Zandrahimi M, Indian J. Chem. Technol., 24, 162 (2017)
Granato D, De Araujo Calado V, Jarvis B, Food Res. International, 55, 149 (2014)
Deniz B, Sibel Z, Corrosion, 69, 467 (2013)
Khadom A, Rashid K, World J. Eng., 15/3, 388 (2018)
Tarantino L, Design and Analysis of Industrial Experiments, Tetra Pak (2010).
Marcus P, Mansfeld F, Analytical Methods in Corrosion Science and Engineering, 10th Ed., Taylor and Francis Group, New York (2006).
Khadom A, Korean J. Chem. Eng., 30, 2204 (2013)
Wu CJ, Michael S, Experiments: Planning, Analysis and Optimization, 2nd Ed., John Wiley New York, USA (2009).
Musa AY, Kadhum AA, Mohamad AB, Daud AR, Takriff MS, Kamarudin SK, Corrosion Sci., 51, 2393 (2009)
Yaro AS, Al-Jendeel H, Khadom AA, Desalination, 270(1-3), 193 (2011)
Rashid K, Khadom A, Anti-Corrosion Methods and Materials, 65, 514 (2018).
Cedeno M, Vera L, Pineda T, J. Phys.: Conf. Series, 786 (2017).
Zhao L, He Y, Deng X, Yang G, Li W, Liang J, Tang Q, Molecules, 17, 3618 (2012)
Thirumalaikumarasamy D, Balasubramanian V, Sabari S, J. Magnesium Alloys, 5, 133 (2017)
Musa A, Kadhum A, Mohamad A, Daud A, Takriff M, Kamarudin S, Corrosion Sci., 51, 2393 (2009)
Yaro A, Kahdom A, Int. J. Surf. Sci. Eng., 4, 438 (2010)
Uhlig H, Winston R, Corrosion and Corrosion Control, 4th Ed., Wiley (2008).
El Din AS, Mohammed R, Haggag H, Desalination, 114, 95 (1997)
De Souza F, Corrosion Sci., 51, 642 (2009)