Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 15, 2018
Accepted June 1, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
A novel internal assistance method for enhanced fluidization of nanoparticles
Faculty of Chemical & Petroleum Engineering, University of Tabriz, P. O. Box 51666-16471, Tabriz, Iran
tahmasebpoor@tabrizu.ac.ir
Korean Journal of Chemical Engineering, August 2019, 36(8), 1377-1387(11), 10.1007/s11814-019-0318-7
Download PDF
Abstract
Hydrophilic (polar-P) and hydrophobic (apolar-A) SiO2 nanoparticles were used as assistant materials to improve the fluidizability of Al2O3 and TiO2 nanopowders, which are hard to fluidize normally. To decrease the strong electrostatic forces, binary mixtures prepared with SiO2(P) were fluidized in the presence of suitable alcohol vapors. Results showed that the amount of SiO2 nanoparticles, varying from 5 to 50wt%, mostly had a beneficial effect on the fluidization quality of the binary mixtures in both cases. TiO2 and Al2O3 nanoparticles combined with 20 wt% SiO2(A) showed almost equal performance in terms of fluidization with the mixtures containing only 5 wt% SiO2(P). This behavior can be addressed by better material homogeneity of latter mixtures which led to a homogeneous, smooth and stable behavior with desirable bed expansion. By comparing the results obtained in this work with those available in the literature, it is proposed that physical mixing with SiO2(P) NPs to improve the flowability of Al2O3 and TiO2 hard-tofluidize nanoparticles, may be comparatively more efficient than even some of the external methods such as acoustic field or mechanical vibration.
References
Aghabararnejad M, Mostoufi N, Sotudeh-Gharebagh R, Zarghami R, Ind. Eng. Chem. Res., 50(8), 4245 (2011)
Matsuda S, Hatano H, Muramoto T, Tsutsumi A, AIChE J., 50(11), 2763 (2004)
Wang Y, Gu GS, Wei F, Wu J, Powder Technol., 124(1-2), 152 (2002)
Yu Q, Dave RN, Zhu C, Quevedo JA, Pfeffer R, AIChE J., 51(7), 1971 (2005)
Nam CH, Pfeffer R, Dave RN, Sundaresan S, AIChE J., 50(8), 1776 (2004)
Yang JS, Zhou T, Song LY, Adv. Powder Technol., 20(2), 158 (2009)
Scicolone JV, Lepek D, Louie L, Dave RN, J. Nanopart. Res., 15, 1434 (2013)
Zeng P, Zhou T, Yang J, Chem. Eng. Processing: Process Intensification, 47, 101 (2008)
Zhu C, Liu GL, Yu Q, Pfeffer R, Dave RN, Nam CH, Powder Technol., 141(1-2), 119 (2004)
Kaliyaperumal S, Barghi S, Zhu J, Briens L, Rohani S, Powder Technol., 210(2), 143 (2011)
Ali SS, Asif M, Powder Technol., 225, 86 (2012)
Bizhaem HK, Tabrizi HB, Powder Technol., 237, 14 (2013)
Nakamura H, Watano S, Powder Technol., 183(3), 324 (2008)
Kashyap M, Gidaspow D, Driscoll M, Powder Technol., 183(3), 441 (2008)
Valverde JM, Quintanilla MA, Espin MJ, Castellanos A, Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys., 77, 031301 (2008)
Quevedo JA, Omosebi A, Pfeffer R, AIChE J., 56(6), 1456 (2010)
Wang J, Xu B, Zhou T, Liang XZ, Chem. Eng. Technol., 39(8), 1490 (2016)
Song LY, Zhou T, Yang JS, Adv. Powder Technol., 20(4), 366 (2009)
Duan H, Liang X, Zhou T, Wang J, Tang W, Powder Technol., 267, 315 (2014)
Chen YH, Yang J, Dave RN, Pfeffer R, AIChE J., 54(1), 104 (2008)
Yang J, Sliva A, Banerjee A, Dave RN, Pfeffer R, Powder Technol., 158(1-3), 21 (2005)
Liang XZ, Duan H, Zhou T, Kong JR, Adv. Powder Technol., 25(1), 236 (2014)
Liang XZ, Zhou YM, Zou LX, Kong JR, Wang J, Zhou T, Powder Technol., 304, 101 (2016)
Valverde JM, Pontiga F, Soria-Hoyo C, Quintanilla MA, Moreno H, Duran FJ, Espin MJ, Phys. Chem. Chem. Phys., 13, 14906 (2011)
Quintanilla MAS, Valverde JM, Particuology, 11, 448 (213)
Azimi B, Tahmasebpoor M, Sanchez-Jimenez PE, Perejon A, Valverde JM, Chem. Eng. J., 358, 679 (2018)
Amjadi O, Tahmasebpoor M, Aghdasinia H, Chem. Eng. Technol., 42(2), 287 (2019)
Pontiga F, Valverde JM, Moreno H, Duran-Olivencia FJ, Chem. Eng. J., 222, 546 (2013)
Tahmasebpoor M, de Martin L, Talebi M, Mostoufi N, van Ommen JR, PCCP, 15, 5788 (2013)
Tahmasebpoor M, Abadi RGS, Noupoor YR, Badamchizadeh P, Ind. Eng. Chem. Res., 55(50), 12939 (2016)
Pfeffer R, Quevedo JA, US Patent, 7,905,433 (2011).
Larkin P, Infrared and Raman spectroscopy; principles and spectral interpretation, Elsevier (2011).
Chaouki J, Chavarie C, Klvana D, Pajonk G, Powder Technol., 43, 117 (1985)
Valverde JM, Castellanos A, Powder Technol., 181(3), 347 (2008)
de Martin L, van Ommen JR, J. Nanopart. Res., 15, 1 (2013)
Zhu C, Yu Q, Dave RN, Pfeffer R, AIChE J., 51(2), 426 (2005)
Vandervegte EW, Hadziioannou G, Langmuir, 13(16), 4357 (1997)
Ammendola P, Chirone R, Raganati F, Adv. Powder Technol., 22(2), 174 (2011)
Duan H, Wang J, Zhou T, Procedia Eng., 102, 815 (2015)
Matsuda S, Hatano H, Muramoto T, Tsutsumi A, AIChE J., 50(11), 2763 (2004)
Wang Y, Gu GS, Wei F, Wu J, Powder Technol., 124(1-2), 152 (2002)
Yu Q, Dave RN, Zhu C, Quevedo JA, Pfeffer R, AIChE J., 51(7), 1971 (2005)
Nam CH, Pfeffer R, Dave RN, Sundaresan S, AIChE J., 50(8), 1776 (2004)
Yang JS, Zhou T, Song LY, Adv. Powder Technol., 20(2), 158 (2009)
Scicolone JV, Lepek D, Louie L, Dave RN, J. Nanopart. Res., 15, 1434 (2013)
Zeng P, Zhou T, Yang J, Chem. Eng. Processing: Process Intensification, 47, 101 (2008)
Zhu C, Liu GL, Yu Q, Pfeffer R, Dave RN, Nam CH, Powder Technol., 141(1-2), 119 (2004)
Kaliyaperumal S, Barghi S, Zhu J, Briens L, Rohani S, Powder Technol., 210(2), 143 (2011)
Ali SS, Asif M, Powder Technol., 225, 86 (2012)
Bizhaem HK, Tabrizi HB, Powder Technol., 237, 14 (2013)
Nakamura H, Watano S, Powder Technol., 183(3), 324 (2008)
Kashyap M, Gidaspow D, Driscoll M, Powder Technol., 183(3), 441 (2008)
Valverde JM, Quintanilla MA, Espin MJ, Castellanos A, Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys., 77, 031301 (2008)
Quevedo JA, Omosebi A, Pfeffer R, AIChE J., 56(6), 1456 (2010)
Wang J, Xu B, Zhou T, Liang XZ, Chem. Eng. Technol., 39(8), 1490 (2016)
Song LY, Zhou T, Yang JS, Adv. Powder Technol., 20(4), 366 (2009)
Duan H, Liang X, Zhou T, Wang J, Tang W, Powder Technol., 267, 315 (2014)
Chen YH, Yang J, Dave RN, Pfeffer R, AIChE J., 54(1), 104 (2008)
Yang J, Sliva A, Banerjee A, Dave RN, Pfeffer R, Powder Technol., 158(1-3), 21 (2005)
Liang XZ, Duan H, Zhou T, Kong JR, Adv. Powder Technol., 25(1), 236 (2014)
Liang XZ, Zhou YM, Zou LX, Kong JR, Wang J, Zhou T, Powder Technol., 304, 101 (2016)
Valverde JM, Pontiga F, Soria-Hoyo C, Quintanilla MA, Moreno H, Duran FJ, Espin MJ, Phys. Chem. Chem. Phys., 13, 14906 (2011)
Quintanilla MAS, Valverde JM, Particuology, 11, 448 (213)
Azimi B, Tahmasebpoor M, Sanchez-Jimenez PE, Perejon A, Valverde JM, Chem. Eng. J., 358, 679 (2018)
Amjadi O, Tahmasebpoor M, Aghdasinia H, Chem. Eng. Technol., 42(2), 287 (2019)
Pontiga F, Valverde JM, Moreno H, Duran-Olivencia FJ, Chem. Eng. J., 222, 546 (2013)
Tahmasebpoor M, de Martin L, Talebi M, Mostoufi N, van Ommen JR, PCCP, 15, 5788 (2013)
Tahmasebpoor M, Abadi RGS, Noupoor YR, Badamchizadeh P, Ind. Eng. Chem. Res., 55(50), 12939 (2016)
Pfeffer R, Quevedo JA, US Patent, 7,905,433 (2011).
Larkin P, Infrared and Raman spectroscopy; principles and spectral interpretation, Elsevier (2011).
Chaouki J, Chavarie C, Klvana D, Pajonk G, Powder Technol., 43, 117 (1985)
Valverde JM, Castellanos A, Powder Technol., 181(3), 347 (2008)
de Martin L, van Ommen JR, J. Nanopart. Res., 15, 1 (2013)
Zhu C, Yu Q, Dave RN, Pfeffer R, AIChE J., 51(2), 426 (2005)
Vandervegte EW, Hadziioannou G, Langmuir, 13(16), 4357 (1997)
Ammendola P, Chirone R, Raganati F, Adv. Powder Technol., 22(2), 174 (2011)
Duan H, Wang J, Zhou T, Procedia Eng., 102, 815 (2015)