Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 3, 2019
Accepted July 23, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Mesoporous carbon supported MgO for CO2 capture and separation of CO2/N2
Harshitha Burri
Rumana Anjum
Ramesh Babu Gurram1
Harisekhar Mitta2
Suresh Mutyala3
Madhavi Jonnalagadda†
Department of Chemistry, Government Degree College for Women, Karimnagar, Telangana, India 1Catalysis Laboratory, Indian Institute of Chemical Technology, Hyderabad-500007, India 2State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian-116023, China 3Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China
madhavi0521@gmail.com
Korean Journal of Chemical Engineering, September 2019, 36(9), 1482-1488(7), 10.1007/s11814-019-0346-3
Download PDF
Abstract
Mesoporous carbon derived from pongamia pinnata fruit hulls was used as support to incorporate magnesium oxide for the study of CO2 adsorption and separation of CO2/N2. All synthesized adsorbents were characterized by PXRD, N2 adsorption-desorption isotherms, Raman and SEM with EDX techniques. Characterization results revealed the existence of magnesium oxide on mesoporous carbon. CO2 adsorption on MgO incorporated mesoporous carbon was higher than bulk mesoporous carbon, due to the electrostatic interaction between magnesium oxide and CO2. High CO2 adsorption capacity 1.68mmol/g was obtained for 10 wt% MgO incorporated mesoporous carbon at 298 K, 1 bar compared to remaining loadings, because of the high content of MgO. However, the N2 adsorption capacity decreased with the increase of MgO content due to a decrease in surface area and no interaction of the N2 molecule with the adsorbent. The selectivity of CO2/N2 was higher on 10 wt% MgO incorporated mesoporous carbon and the value was 40. The heat of CO2 adsorption was 36KJ/mol at low coverage of CO2, and CO2 adsorption capacity was constant in each adsorption cycle over the same adsorbent.
References
Hosseini S, Bayesti I, Marahel E, Eghbali Babadi F, Chuah Abdullah L, Choong TSY, J. Taiwan Inst. Chem. Eng., 52, 109 (2015)
Aaron D, Tsouris C, Sep. Purif. Technol., 40, 321 (2005)
Al Mesfer MK, Danish M, J. Environ. Chem. Eng., 6, 4514 (2018)
Seabra R, Ribeiro AM, Gleichmann K, Ferreira AFP, Rodrigues AE, Microporous Mesoporous Mater., 277, 105 (2019)
Pires J, Bestilleiro M, Pinto M, Gil A, Sep. Purif. Technol., 61(2), 161 (2008)
Knofel C, Descarpentries J, Benzaouia A, Zelenak V, Mornet S, Llewellyn PL, Hornebecq V, Microporous Mesoporous Mater., 99, 79 (2007)
Saha BB, Jribi S, Koyama S, E-Sharkawy II, J. Chem. Eng. Data, 56(5), 1974 (2011)
Gurten II, Ozmak M, Yagmur E, Aktas Z, Biomass Bioenerg., 37, 73 (2012)
Rattanapan S, Srikram J, Kongsune P, Energy Procedia, 138, 949 (2017)
Deng H, Li GX, Yang HB, Tang JP, Tang JY, Chem. Eng. J., 163(3), 373 (2010)
Uysal T, Duman G, Onal Y, Yasa I, Yanik J, J. Anal. Appl. Pyrolysis, 108, 47 (2014)
Yakout SM, Sharaf El-Deen G, Arabian J. Chem., 9, S1155 (2016)
Zhao X, Li W, Kong FG, Chen HL, Wang ZQ, Liu SX, Jin CD, Mater. Chem. Phys., 219, 461 (2018)
Gao Y, Li L, Jin YM, Wang Y, Yuan CJ, Wei YJ, Chen G, Ge JJ, Lu HY, Appl. Energy, 153, 41 (2015)
Chanapattharapol KC, Krachuamram S, Youngme S, Microporous Mesoporous Mater., 245, 8 (2017)
Li M, Huang K, Schott JA, Wu Z, Dai S, Microporous Mesoporous Mater., 249, 34 (2017)
Kim BJ, Cho KS, Park SJ, J. Colloid Interface Sci., 342(2), 575 (2010)
Jang DI, Park SJ, Fuel, 102, 439 (2012)
Shi J, Yan N, Cui H, Liu Y, Weng Y, J. Environ. Chem. Eng., 5, 4605 (2017)
Cai WQ, Zhang ST, Hu X, Jaroniec M, Energy Fuels, 32(9), 9701 (2018)
Zhao H, Yan W, Bian Z, Hu J, Liu H, Solid State Sci., 14, 250 (2012)
Jeon H, Min YJ, Ahn SH, Hong SM, Shin JS, Kim JH, Lee KB, Colloids Surf. A: Physicochem. Eng. Asp., 414, 75 (2012)
Islam MA, Sabar S, Benhouria A, Khanday WA, Asif M, Hameed BH, J. Taiwan Inst. Chem. Eng., 74, 96 (2017)
Chen B, Yang Z, Ma G, Kong D, Xiong W, Wang J, Zhu Y, Xia Y, Microporous Mesoporous Mater., 257, 1 (2018)
Park SJ, Lee SY, J. Colloid Interface Sci., 346(1), 194 (2010)
Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
Tian W, Gao Q, Tan Y, Yang K, Zhu L, Yang C, Zhang H, J. Mater. Chem. A, 3, 5656 (2015)
Cheng S, Zhang L, Xia H, Peng J, Green Process. Synth., 6, 487 (2017)
Saleh M, Tiwari JN, Kemp KC, Yousuf M, Kim SK, Environ. Sci. Technol., 47, 5467 (2013)
Goel C, Bhunia H, Bajpai PK, J. Environ. Chem. Eng., 4, 346 (2016)
Yan J, Yu Y, Ma C, Xiao J, Xia Q, Li Y, Li Z, Appl. Therm. Eng., 84, 118 (2015)
McEwen J, Hayman JD, Ozgur Yazaydin A, Chem. Phys., 412, 72 (2013)
Upendar K, Sagar TV, Raveendra G, Lingaiah N, Rao BVSK, Prasad RBN, Prasad PSS, RSC Adv., 4, 7142 (2014)
Zhang S, Cai WQ, Yu JG, Ji CC, Zhao N, Chem. Eng. J., 310, 216 (2017)
Aaron D, Tsouris C, Sep. Purif. Technol., 40, 321 (2005)
Al Mesfer MK, Danish M, J. Environ. Chem. Eng., 6, 4514 (2018)
Seabra R, Ribeiro AM, Gleichmann K, Ferreira AFP, Rodrigues AE, Microporous Mesoporous Mater., 277, 105 (2019)
Pires J, Bestilleiro M, Pinto M, Gil A, Sep. Purif. Technol., 61(2), 161 (2008)
Knofel C, Descarpentries J, Benzaouia A, Zelenak V, Mornet S, Llewellyn PL, Hornebecq V, Microporous Mesoporous Mater., 99, 79 (2007)
Saha BB, Jribi S, Koyama S, E-Sharkawy II, J. Chem. Eng. Data, 56(5), 1974 (2011)
Gurten II, Ozmak M, Yagmur E, Aktas Z, Biomass Bioenerg., 37, 73 (2012)
Rattanapan S, Srikram J, Kongsune P, Energy Procedia, 138, 949 (2017)
Deng H, Li GX, Yang HB, Tang JP, Tang JY, Chem. Eng. J., 163(3), 373 (2010)
Uysal T, Duman G, Onal Y, Yasa I, Yanik J, J. Anal. Appl. Pyrolysis, 108, 47 (2014)
Yakout SM, Sharaf El-Deen G, Arabian J. Chem., 9, S1155 (2016)
Zhao X, Li W, Kong FG, Chen HL, Wang ZQ, Liu SX, Jin CD, Mater. Chem. Phys., 219, 461 (2018)
Gao Y, Li L, Jin YM, Wang Y, Yuan CJ, Wei YJ, Chen G, Ge JJ, Lu HY, Appl. Energy, 153, 41 (2015)
Chanapattharapol KC, Krachuamram S, Youngme S, Microporous Mesoporous Mater., 245, 8 (2017)
Li M, Huang K, Schott JA, Wu Z, Dai S, Microporous Mesoporous Mater., 249, 34 (2017)
Kim BJ, Cho KS, Park SJ, J. Colloid Interface Sci., 342(2), 575 (2010)
Jang DI, Park SJ, Fuel, 102, 439 (2012)
Shi J, Yan N, Cui H, Liu Y, Weng Y, J. Environ. Chem. Eng., 5, 4605 (2017)
Cai WQ, Zhang ST, Hu X, Jaroniec M, Energy Fuels, 32(9), 9701 (2018)
Zhao H, Yan W, Bian Z, Hu J, Liu H, Solid State Sci., 14, 250 (2012)
Jeon H, Min YJ, Ahn SH, Hong SM, Shin JS, Kim JH, Lee KB, Colloids Surf. A: Physicochem. Eng. Asp., 414, 75 (2012)
Islam MA, Sabar S, Benhouria A, Khanday WA, Asif M, Hameed BH, J. Taiwan Inst. Chem. Eng., 74, 96 (2017)
Chen B, Yang Z, Ma G, Kong D, Xiong W, Wang J, Zhu Y, Xia Y, Microporous Mesoporous Mater., 257, 1 (2018)
Park SJ, Lee SY, J. Colloid Interface Sci., 346(1), 194 (2010)
Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
Tian W, Gao Q, Tan Y, Yang K, Zhu L, Yang C, Zhang H, J. Mater. Chem. A, 3, 5656 (2015)
Cheng S, Zhang L, Xia H, Peng J, Green Process. Synth., 6, 487 (2017)
Saleh M, Tiwari JN, Kemp KC, Yousuf M, Kim SK, Environ. Sci. Technol., 47, 5467 (2013)
Goel C, Bhunia H, Bajpai PK, J. Environ. Chem. Eng., 4, 346 (2016)
Yan J, Yu Y, Ma C, Xiao J, Xia Q, Li Y, Li Z, Appl. Therm. Eng., 84, 118 (2015)
McEwen J, Hayman JD, Ozgur Yazaydin A, Chem. Phys., 412, 72 (2013)
Upendar K, Sagar TV, Raveendra G, Lingaiah N, Rao BVSK, Prasad RBN, Prasad PSS, RSC Adv., 4, 7142 (2014)
Zhang S, Cai WQ, Yu JG, Ji CC, Zhao N, Chem. Eng. J., 310, 216 (2017)