Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 11, 2019
Accepted July 15, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Fluorescence detection of bisphenol A in aqueous solution using magnetite core-shell material with gold nanoclusters prepared by molecular imprinting technique
Department of Chemical Engineering, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea
leeb@kmu.ac.kr
Korean Journal of Chemical Engineering, September 2019, 36(9), 1509-1517(9), 10.1007/s11814-019-0342-7
Download PDF
Abstract
Technologies for detecting endocrine disrupting compounds such as bisphenol A (BPA) in an aqueous solution in a convenient way and low cost have gained much attention. In this work, to overcome the drawbacks of current detection methods, we applied molecular imprinted polymers (MIPs) to core-shell materials. The core-shell material has the advantage that both properties of the core and shell materials can be used simultaneously. After binding BPA in an aqueous solution, the magnetic core material was able to be recovered using magnetism. In addition, functional groups were easily introduced using silica as a shell material. Gold nanoclusters (AuNCs) and MIPs were used to give changes in the fluorescence intensity when BPA was bound to the prepared core-shell material. The physical properties of the prepared Fe3O4@SiO2@AuNCs-MIP (CS-MIP) were analyzed and fluorescence intensities of CSMIP for BPA were examined. The prepared material was recovered using a magnet, and the recovered CS-MIP was regenerated to investigate how the fluorescence properties for BPA changed in the subsequent reuses.
References
Thomas KV, Hurst MR, Matthiessen P, Waldock MJ, Environ. Toxicol. Chem., 20, 2165 (2001)
Colborn T, Dumanoski D, Myers JP, Our stolen future, Dutton, New York (1996).
Ankley GT, Johnson RD, Toth G, Folman LC, Detenbeck NE, Bradbury SP, Rev. Toxicol. Ser. B: Environ. Toxicol., 1, 71 (1997)
Kavlock RJ, Daston GP, Derosa C, Fenner-Crisp P, Gray LE, et al., Environ. Health Perspect., 104, 715 (1996)
Ahn K, Kim B, J. Environ. Toxicol., 18, 175 (2003)
Zimmers SM, Browne EP, Okeefe PW, Anderton DL, Kramer L, Reckhow DA, Arcaro KF, Chemosphere, 104, 237 (2014)
Shen G, Yu G, Cai ZX, Zhang Z, Chin. Sci. Bull., 50, 2681 (2005)
Dong RC, Li JH, Xiong H, Lu WH, Peng HL, Chen LX, Talanta, 130, 182 (2014)
Kim H, Kim Y, Curr. Appl. Phys., 9, 88 (2009)
Kim H, Kim Y, Ko J, J. Korean Inst. Gas, 12, 32 (2008)
Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon, 45, 1558 (2007)
Lian W, Liu S, Yu J, Xing X, Li J, Cui M, Huang J, Biosens. Bioelectron., 38, 163 (2012)
Kim Y, Johnson RC, Hupp JT, Nano Lett., 1, 165 (2001)
Liu J, Lu Y, Nat. Protoc., 1, 246 (2006)
Zhang C, Suslick KS, J. Am. Chem. Soc., 127(33), 11548 (2005)
Kim Y, Lee B, Korean Chem. Eng. Res., 49(4), 393 (2011)
Chaudhuri RG, Paria S, Chem. Rev., 112(4), 2373 (2012)
Ding HL, Zhang YX, Wnag S, Xu JM, Xu SC, Li GH, Chem. Mater., 24, 4752 (2012)
Deng Y, Qi D, Deng C, Zhang X, Zhao D, J. Am. Chem. Soc., 130(1), 28 (2008)
Zhou Q, Wang Y, Xiao J, Fan H, Synth. Met., 212, 113 (2016)
Zhao X, Cai Y, Wang T, Shi Y, Jiang G, Anal. Chem., 80, 9091 (2008)
Deng Y, Wang C, Hu J, Yang W, Fu S, Colloids Surf. A: Physicochem. Eng. Asp., 262, 87 (2005)
Chen TT, Hu YH, Cen Y, Chu X, Lu Y, J. Am. Chem. Soc., 135(31), 11595 (2013)
Shang L, Dong SJ, Nienhaus GU, Nano Today, 6(4), 401 (2011)
Xie JP, Zheng YG, Ying JY, Chem. Commun., 46, 961 (2010)
Jin LH, Shang L, Guo SJ, Fang YX, Wen D, Wang L, Yin JY, Dong SJ, Biosens. Bioelectron., 26, 1965 (2011)
Huang JD, Zhang XM, Liu S, Lin Q, He XR, Xing XR, Lian WJ, J. Appl. Electrochem., 41(11), 1323 (2011)
Li JH, Zhang Z, Xu SF, Chen LX, Zhou N, Xiong H, Peng HL, J. Mater. Chem., 21, 19267 (2011)
Chen LX, Xu SF, Li JH, Chem. Soc. Rev., 40, 2922 (2011)
Suriyanarayanan S, Cywinski PJ, Moro AJ, Mohr GJ, Kutner W, Top. Curr. Chem., 325, 165 (2012)
Yang Q, Li J, Wang X, Peng H, Xing H, Chen L, Biosens. Bioelectron., 112, 54 (2018)
Wang X, Yu S, Liu W, Fu L, Wang Y, Li J, Chen L, ACS Sens., 3, 378 (2018)
Gao DM, Zhang ZP, Wu MH, Xie CG, Guan GJ, Wang DP, J. Am. Chem. Soc., 129(25), 7859 (2007)
Ji Y, Yin J, Xu Z, Zhao C, Huang H, Zhang H, Wang C, Anal. Bioanal. Chem., 395, 1125 (2009)
Xu Z, Ding L, Long Y, Xu L, Wang L, Xu C, Anal. Methods, 3, 1737 (2011)
Elbialy NS, Fathy MM, Khalil WM, Phys. Med., 30, 843 (2014)
Wu X, Zhang Z, Li J, You H, Li Y, Chen L, Sens. Actuators B-Chem., 211, 507 (2015)
Htun T, J. Fluoresc., 14, 217 (2004)
Yamaura M, Camilo R, Sampaio L, Macedo M, Nakamura M, Toma H, J. Magn. Magn. Mater., 279, 210 (2004)
Groen J, Peffer L, Perez-Ramirez J, Microporous Mesoporous Mater., 60, 1 (2003)
Socrates G, Infrared Characteristic Group Frequencies, Wiley, New York (1994).
Wang JH, Zheng SR, Shao Y, Liu JL, Xu ZY, Zhu DQ, J. Colloid Interface Sci., 349(1), 293 (2010)
Lakowicz JR, Quenching of fluorescence. Principles of fluorescence spectroscopy, Springer Publications, Boston (1983).
Kamat BP, Seetharamappa J, J. Chem. Sci., 117, 649 (2005)
Cheng PPH, Silvester D, Wang GL, Kalyuzhny G, Douglas A, Murray RW, J. Phys. Chem. B, 110(10), 4637 (2006)
Gopal R, Lee JK, Lee JH, Kim YG, Oh GC, Seo CH, Park Y, Int. J. Mol. Sci., 14(1), 2190 (2013)
Colpa JP, MacLean C, Mackor EL, Tetrahedron, 19, 65 (1963)
Gunnlaugsson T, Kruger PE, Lee TC, Parkesh R, Pfeffer FM, Hussey GM, Tetrahedron Lett., 44, 6575 (2003)
Kim YH, Lee B, Choo KH, Choi SJ, Microporous Mesoporous Mater., 185, 121 (2014)
Colborn T, Dumanoski D, Myers JP, Our stolen future, Dutton, New York (1996).
Ankley GT, Johnson RD, Toth G, Folman LC, Detenbeck NE, Bradbury SP, Rev. Toxicol. Ser. B: Environ. Toxicol., 1, 71 (1997)
Kavlock RJ, Daston GP, Derosa C, Fenner-Crisp P, Gray LE, et al., Environ. Health Perspect., 104, 715 (1996)
Ahn K, Kim B, J. Environ. Toxicol., 18, 175 (2003)
Zimmers SM, Browne EP, Okeefe PW, Anderton DL, Kramer L, Reckhow DA, Arcaro KF, Chemosphere, 104, 237 (2014)
Shen G, Yu G, Cai ZX, Zhang Z, Chin. Sci. Bull., 50, 2681 (2005)
Dong RC, Li JH, Xiong H, Lu WH, Peng HL, Chen LX, Talanta, 130, 182 (2014)
Kim H, Kim Y, Curr. Appl. Phys., 9, 88 (2009)
Kim H, Kim Y, Ko J, J. Korean Inst. Gas, 12, 32 (2008)
Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon, 45, 1558 (2007)
Lian W, Liu S, Yu J, Xing X, Li J, Cui M, Huang J, Biosens. Bioelectron., 38, 163 (2012)
Kim Y, Johnson RC, Hupp JT, Nano Lett., 1, 165 (2001)
Liu J, Lu Y, Nat. Protoc., 1, 246 (2006)
Zhang C, Suslick KS, J. Am. Chem. Soc., 127(33), 11548 (2005)
Kim Y, Lee B, Korean Chem. Eng. Res., 49(4), 393 (2011)
Chaudhuri RG, Paria S, Chem. Rev., 112(4), 2373 (2012)
Ding HL, Zhang YX, Wnag S, Xu JM, Xu SC, Li GH, Chem. Mater., 24, 4752 (2012)
Deng Y, Qi D, Deng C, Zhang X, Zhao D, J. Am. Chem. Soc., 130(1), 28 (2008)
Zhou Q, Wang Y, Xiao J, Fan H, Synth. Met., 212, 113 (2016)
Zhao X, Cai Y, Wang T, Shi Y, Jiang G, Anal. Chem., 80, 9091 (2008)
Deng Y, Wang C, Hu J, Yang W, Fu S, Colloids Surf. A: Physicochem. Eng. Asp., 262, 87 (2005)
Chen TT, Hu YH, Cen Y, Chu X, Lu Y, J. Am. Chem. Soc., 135(31), 11595 (2013)
Shang L, Dong SJ, Nienhaus GU, Nano Today, 6(4), 401 (2011)
Xie JP, Zheng YG, Ying JY, Chem. Commun., 46, 961 (2010)
Jin LH, Shang L, Guo SJ, Fang YX, Wen D, Wang L, Yin JY, Dong SJ, Biosens. Bioelectron., 26, 1965 (2011)
Huang JD, Zhang XM, Liu S, Lin Q, He XR, Xing XR, Lian WJ, J. Appl. Electrochem., 41(11), 1323 (2011)
Li JH, Zhang Z, Xu SF, Chen LX, Zhou N, Xiong H, Peng HL, J. Mater. Chem., 21, 19267 (2011)
Chen LX, Xu SF, Li JH, Chem. Soc. Rev., 40, 2922 (2011)
Suriyanarayanan S, Cywinski PJ, Moro AJ, Mohr GJ, Kutner W, Top. Curr. Chem., 325, 165 (2012)
Yang Q, Li J, Wang X, Peng H, Xing H, Chen L, Biosens. Bioelectron., 112, 54 (2018)
Wang X, Yu S, Liu W, Fu L, Wang Y, Li J, Chen L, ACS Sens., 3, 378 (2018)
Gao DM, Zhang ZP, Wu MH, Xie CG, Guan GJ, Wang DP, J. Am. Chem. Soc., 129(25), 7859 (2007)
Ji Y, Yin J, Xu Z, Zhao C, Huang H, Zhang H, Wang C, Anal. Bioanal. Chem., 395, 1125 (2009)
Xu Z, Ding L, Long Y, Xu L, Wang L, Xu C, Anal. Methods, 3, 1737 (2011)
Elbialy NS, Fathy MM, Khalil WM, Phys. Med., 30, 843 (2014)
Wu X, Zhang Z, Li J, You H, Li Y, Chen L, Sens. Actuators B-Chem., 211, 507 (2015)
Htun T, J. Fluoresc., 14, 217 (2004)
Yamaura M, Camilo R, Sampaio L, Macedo M, Nakamura M, Toma H, J. Magn. Magn. Mater., 279, 210 (2004)
Groen J, Peffer L, Perez-Ramirez J, Microporous Mesoporous Mater., 60, 1 (2003)
Socrates G, Infrared Characteristic Group Frequencies, Wiley, New York (1994).
Wang JH, Zheng SR, Shao Y, Liu JL, Xu ZY, Zhu DQ, J. Colloid Interface Sci., 349(1), 293 (2010)
Lakowicz JR, Quenching of fluorescence. Principles of fluorescence spectroscopy, Springer Publications, Boston (1983).
Kamat BP, Seetharamappa J, J. Chem. Sci., 117, 649 (2005)
Cheng PPH, Silvester D, Wang GL, Kalyuzhny G, Douglas A, Murray RW, J. Phys. Chem. B, 110(10), 4637 (2006)
Gopal R, Lee JK, Lee JH, Kim YG, Oh GC, Seo CH, Park Y, Int. J. Mol. Sci., 14(1), 2190 (2013)
Colpa JP, MacLean C, Mackor EL, Tetrahedron, 19, 65 (1963)
Gunnlaugsson T, Kruger PE, Lee TC, Parkesh R, Pfeffer FM, Hussey GM, Tetrahedron Lett., 44, 6575 (2003)
Kim YH, Lee B, Choo KH, Choi SJ, Microporous Mesoporous Mater., 185, 121 (2014)