ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 3, 2019
Accepted July 19, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Synthesis of InP nanocrystals using triphenyl phosphite as phosphorus source

Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea 1SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Gyeonggi 16419, Korea 2Department of Chemical Engineering and Department of Energy System Research, Ajou University, Suwon 16499, Korea
dclee@kaist.edu
Korean Journal of Chemical Engineering, September 2019, 36(9), 1518-1526(9), 10.1007/s11814-019-0344-5
downloadDownload PDF

Abstract

Commercially viable synthesis of InP nanocrystals (NCs) involves highly pyrophoric phosphorus (P) precursor, tris(trimethylsilyl) phosphine (TMS3P). Finding a cheap and safe alternative would be the holy grail. We report the synthesis of InP NCs using triphenyl phosphite, an inexpensive and relatively safe phosphorous source. By reacting indium chloride and triphenyl phosphite, we obtained large-sized and black-colored InP NCs, yet without any distinct feature that shows quantum confinement effect. Addition of ZnCl2 resulted in InP NCs with controlled size, which was manifested in the shift of 1S peak in absorption spectra. By coating ZnS shell on InP NCs, we achieved photoluminescence with some extent of trap emission, showing maximum total quantum yield (QY) of 23% (8% of band-edge emission QY). We used 31P nuclear magnetic resonance (NMR), diffusion-ordered spectroscopy (DOSY), and mass spectrometry (MS) to assign intermediates and following mechanisms of the InP synthesis using triphenyl phosphite. The development of this safe and cost-effective P precursor opens broader opportunity space for large-scale production of InP NC.

References

Alivisatos AP, J. Phys. Chem., 100(31), 13226 (1996)
Murray CB, Kagan CR, Bawendi MG, Annu. Rev. Mater. Res., 30, 545 (2000)
Talapin DV, Murray CB, Science, 310, 86 (2005)
Kim WD, Kim D, Yoon DE, Lee H, Lim J, Bae WK, Lee DC, Chem. Mater., 31, 3066 (2019)
Shirasaki Y, Supran GJ, Bawendi MG, Bulovic V, Nat. Photonics, 7, 13 (2012)
Woo JY, Ko JH, Song JH, Kim K, Choi H, Kim YH, Lee DC, Jeong S, J. Am. Chem. Soc., 136(25), 8883 (2014)
Woo JY, Lee S, Lee S, Kim WD, Lee K, Kim K, An HJ, Lee DC, Jeong S, J. Am. Chem. Soc., 138(3), 876 (2016)
Woo JY, Kim Y, Bae J, Kim TG, Kim JW, Lee DC, Jeong S, Chem. Mater., 29, 7088 (2017)
Kim D, Lee YK, Lee D, Kim WD, Bae WK, Lee DC, ACS Nano, 11, 12461 (2017)
Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivisatos AP, Nature, 404(6773), 59 (2000)
Kim WD, Yoon DE, Kim D, Koh S, Bae WK, Chae WS, Lee DC, J. Phys. Chem. C, 123, 9445 (2019)
Koh S, Kim WD, Bae WK, Lee YK, Lee DC, Chem. Mater., 31, 1990 (2019)
Tersoff J, Teichert C, Lagally MG, Phys. Rev. Lett., 76, 1675 (1996)
Jeong BG, Park YS, Chang JH, Cho I, Kim JK, Kim H, Char K, Cho J, Klimov VI, Park P, Lee DC, Bae WK, ACS Nano, 10, 9297 (2016)
Kim D, Bae WK, Kim SH, Lee DC, Nano Lett., 19, 963 (2019)
Kim WD, Chae WS, Bae WK, Lee DC, Chem. Mater., 27, 2797 (2015)
Hohng S, Ha T, J. Am. Chem. Soc., 126(5), 1324 (2004)
Kagan CR, Murray CB, Nirmal M, Bawendi MG, Phys. Rev. Lett., 76, 1517 (1996)
Nirmal M, Brus L, Accounts Chem. Res., 32, 407 (1999)
Burda C, Chen XB, Narayanan R, El-Sayed MA, Chem. Rev., 105(4), 1025 (2005)
Koh S, Lee DC, MRS Commun., 8, 742 (2018)
Xie R, Battaglia D, Peng X, J. Am. Chem. Soc., 129(50), 15432 (2007)
Micic OI, Curtis CJ, Jones KM, Sprague JR, Nozik AJ, J. Phys. Chem., 98(19), 4966 (1994)
Battaglia D, Peng X, Nano Lett., 2, 1027 (2002)
Guzelian AA, Katari JE, Kadavanich AV, Banin U, Hamad K, Juban E, Alivisatos AP, Wolters RH, Arnold CC, Heath JR, J. Phys. Chem., 100(17), 7212 (1996)
Micic OI, Sprague JR, Curtis CJ, Jones KM, Machol JL, Nozik AJ, Giessen H, Fluegel B, Mohs G, Peyghambarian N, J. Phys. Chem., 99(19), 7754 (1995)
Cui J, Beyler AP, Marshall LF, Chen O, Harris DK, Wanger DD, Brokmann X, Bawendi MG, Nat. Chem., 5, 602 (2013)
Koh S, Eom T, Kim WD, Lee K, Lee D, Lee YK, Kim H, Bae WK, Lee DC, Chem. Mater., 29, 6346 (2017)
Singh A, Chawla P, Jain S, Sharma SN, Physica E, 90, 175 (2017)
Li L, Protiere M, Reiss P, Chem. Mater., 20, 2621 (2008)
Bang E, Choi Y, Cho J, Suh YH, Ban HW, Son JS, Park J, Chem. Mater., 29, 4236 (2017)
Tessier MD, Dupont D, De Nolf K, De Roo J, Hens Z, Chem. Mater., 27, 4893 (2015)
Buffard A, Dreyfuss S, Nadal B, Heuclin H, Xu X, Patriarche G, Mezailles N, Dubertret B, Chem. Mater., 28, 5925 (2016)
Liu J, Meyns M, Zhang T, Arbiol J, Cabot A, Shavel A, Chem. Mater., 30, 1799 (2018)
Andaraarachchi HP, Thompson MJ, White MA, Fan HJ, Vela J, Chem. Mater., 27, 8021 (2015)
Leto JR, Leto MF, J. Am. Chem. Soc., 83, 2944 (1961)
Vinal RS, Reynolds LT, Inorg. Chem., 3, 1062 (1964)
Khanna PK, Jun KW, Hong KB, Baeg JO, Mehrotra GK, Mater. Chem. Phys., 92(1), 54 (2005)
Harris DK, Bawendi MG, J. Am. Chem. Soc., 134(50), 20211 (2012)
Shin AJ, Eun JJ, Lim JE, Method for Preparing Metal Phosphide Nanocrystal From Phosphite Compound and Method for Passivating Nanocrystal Core with the Same, in: L. Samsung Electronics Co. (Ed.) Korea (2013).
Byun HJ, Lee JC, Yang H, J. Colloid Interface Sci., 355(1), 35 (2011)
Caruntu D, Rostamzadeh T, Costanzo T, Parizi SS, Caruntu G, Nanoscale, 7, 12955 (2015)
Hu L, Wang C, Lee S, Winans RE, Marks LD, Poeppelmeier KR, Chem. Mater., 25, 378 (2013)
Laufersky G, Bradley S, Frecaut E, Lein M, Nann T, Nanoscale, 10, 8752 (2018)
Ando K, Yamaguchi M, Uemura C, Phys. Rev. B, 34, 3041 (1986)
Gislason HP, Watkins GD, Phys. Rev. B, 33, 2957 (1986)
Ryu E, Kim S, Jang E, Jun S, Jang H, Kim B, Kim SW, Chem. Mater., 21, 573 (2009)
Narayanaswamy A, Feiner L, Meijerink A, Van der Zaag P, ACS Nano, 3, 2539 (2009)
Shen W, Tang H, Yang X, Cao Z, Cheng T, Wang X, Tan Z, You J, Deng Z, J. Mater. Chem. C, 5, 8243 (2017)
Li L, Reiss P, J. Am. Chem. Soc., 130(35), 11588 (2008)
Xu S, Ziegler J, Nann T, J. Mater. Chem., 18, 2653 (2008)
Lim J, Bae WK, Lee D, Nam MK, Jung J, Lee C, Char K, Lee S, Chem. Mater., 23, 4459 (2011)
Lim J, Jeong BG, Park M, Kim JK, Pietryga JM, Park YS, Klimov VI, Lee C, Lee DC, Bae WK, Adv. Mater., 26(47), 8034 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로