Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 15, 2019
Accepted July 9, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Room-temperature synthesis of Co3O4 nanoparticles self-assembled into meso/nanoporous microstructures and their application
Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, 197 Inje-ro, Gimhae, Gyeongnam-do 50834, Korea 1Department of Chemical Engineering, Kyung Hee University, Yongin 17104, Korea
wskim@khu.ac.kr
Korean Journal of Chemical Engineering, September 2019, 36(9), 1536-1542(7), 10.1007/s11814-019-0338-3
Download PDF
Abstract
Nano/mesoporous transition metal oxides have attracted extensive attention because of their distinctive morphology and properties, along with exhibiting better performance in many applications. We employed a simple modified version of the one-pot co-precipitation method at room temperature to synthesize three-dimensional mesoporous microstructures obtained by the self-aggregation of Co3O4 nanoparticles, which is sparse in the literature. The obtained structures were used as electrode materials for electrochemical capacitors or supercapacitors. The as-obtained Co3O4 electrode exhibited acceptable specific capacitances of 400 and 165 Fㆍg-1 at applied current densities of 1 and 10 Aㆍg-1, respectively, with over 99% of capacity retention after 4000 cycles.
References
Corma A, Chem. Rev., 97(6), 2373 (1997)
Chen T, Dai L, Mater. Today, 16, 7 (2013)
Zhao C, Chou S, Wang Y, Zhou C, Liu HK, Dou SX, RSC Adv., 3, 16597 (2013)
Venugopal N, Mahmood Q, Park HS, Kim WS, J. Nanosci. Nanotechnol., 16, 12546 (2016)
Cao W, Wang W, Shi H, Wang J, Cao M, Liang Y, Zhu M, Nano Res., 11, 1437 (2018)
Bashir A, Shukla S, Lew JH, Shukla S, Bruno A, Gupta D, Baikie T, Patidar R, Akhter Z, Priyadarshi A, Mathews N, Mhaisalkar SG, Nanoscale, 10, 2341 (2018)
Venugopal N, Pullur AK, Kim WS, Ha HP, Catal. Lett., 144(12), 2151 (2014)
Xu JM, Cheng JP, J. Alloy. Compd., 686, 753 (2016)
Jang YI, Wang HF, Chiang YM, J. Mater. Chem., 8, 2761 (1998)
Luo S, Wang R, Yin J, Jiao T, Chen K, Zou G, Zhang L, Zhou J, Zhang L, Peng Q, ACS Omega, 4, 3946 (2019)
Wang C, Sun S, Zhang L, Yin J, Jiao T, Zhang L, Xu Y, Zhou J, Peng Q, Colloids Surf. A: Physicochem. Eng. Asp., 561, 283 (2019)
Xu Y, Ren B, Wang R, Zhang L, Liu Z, Zhan F, Wang R, Yin J, Han Z, Zhang L, Jiao T, Zhou J, Peng Q, Nanomaterials, 9, 10 (2019)
Feng Y, Jiao T, Yin J, Zhang L, Zhang L, Zhou J, Peng Q, Nanoscale Res. Lett., 14, 78 (2019)
Huang X, Wang R, Jiao T, Zou G, Zhan F, Yin J, Zhang L, Zhou J, Peng Q, ACS Omega, 4, 11897 (2019)
Furlanetto G, Formaro L, J. Colloid Interface Sci., 170(1), 169 (1995)
Venugopal N, Arunakumari N, Sohn KY, Int. J. Electrochem. Sci., 13, 2069 (2018)
Venugopal N, Moon JS, Park WW, Song HJ, Sohn KY, Int. J. Electrochem. Sci., 13, 8313 (2018)
Wang CM, Baer DR, Bruemmer SM, Engelhard MH, Bowden ME, Sundararajan JA, Qiang Y, J. Nanosci. Nanotechnol., 11, 8488 (2011)
Cao Y, Yuan F, Yao M, Bang JH, Lee JH, Cryst. Eng. Comm., 16, 826 (2014)
Pralong V, Delahaye-Vidal A, Beaudoin B, Gerand B, Tarascon JM, J. Mater. Chem., 9, 955 (1999)
Zeng HC, Lim YY, J. Mater. Res., 15, 6 (2000)
Ayyappan S, Gopalan RS, Subbanna GN, Rao CNR, J. Mater. Res., 12, 398 (1997)
He T, Chen D, Jiao X, Wang Y, Duan Y, Chem. Mater., 17, 4023 (2005)
Hadjiev VH, Iliev MN, Vergilov IV, J. Phys. C: Solid State Phys., 21, L199 (1988)
Lee DY, Yoon SY, Shrestha NK, Lee SH, Ahn H, Han SH, Microporous Mesoporous Mater., 153, 163 (2012)
Jafta CJ, Nkosi F, le Roux L, Mathe MK, Kebede M, Makgopa K, Song Y, Tong D, Oyama M, Manyala N, Chen SW, Ozoemena KI, Electrochim. Acta, 110, 228 (2013)
(a) Wang G, Shen X, Horvat J, Wang B, Liu H, Wexler D, Yao J, J. Phys. Chem., 113, 4357 (2009); (b) Beguin F, Presser V, Balducci A, Frackowiak E, Adv. Mater., 26, 2219 (2014).
Cui L, Li J, Zhang XG, J. Appl. Electrochem., 39(10), 1871 (2009)
Wang L, Liu X, Wang X, Yang X, Lu L, J. Mater. Sci., 22, 601 (2011)
Xiao YH, Cao YB, Gong YY, Zhang AQ, Zhao JH, Fang SM, Jia DZ, Li F, J. Power Sources, 246, 926 (2014)
Chen T, Dai L, Mater. Today, 16, 7 (2013)
Zhao C, Chou S, Wang Y, Zhou C, Liu HK, Dou SX, RSC Adv., 3, 16597 (2013)
Venugopal N, Mahmood Q, Park HS, Kim WS, J. Nanosci. Nanotechnol., 16, 12546 (2016)
Cao W, Wang W, Shi H, Wang J, Cao M, Liang Y, Zhu M, Nano Res., 11, 1437 (2018)
Bashir A, Shukla S, Lew JH, Shukla S, Bruno A, Gupta D, Baikie T, Patidar R, Akhter Z, Priyadarshi A, Mathews N, Mhaisalkar SG, Nanoscale, 10, 2341 (2018)
Venugopal N, Pullur AK, Kim WS, Ha HP, Catal. Lett., 144(12), 2151 (2014)
Xu JM, Cheng JP, J. Alloy. Compd., 686, 753 (2016)
Jang YI, Wang HF, Chiang YM, J. Mater. Chem., 8, 2761 (1998)
Luo S, Wang R, Yin J, Jiao T, Chen K, Zou G, Zhang L, Zhou J, Zhang L, Peng Q, ACS Omega, 4, 3946 (2019)
Wang C, Sun S, Zhang L, Yin J, Jiao T, Zhang L, Xu Y, Zhou J, Peng Q, Colloids Surf. A: Physicochem. Eng. Asp., 561, 283 (2019)
Xu Y, Ren B, Wang R, Zhang L, Liu Z, Zhan F, Wang R, Yin J, Han Z, Zhang L, Jiao T, Zhou J, Peng Q, Nanomaterials, 9, 10 (2019)
Feng Y, Jiao T, Yin J, Zhang L, Zhang L, Zhou J, Peng Q, Nanoscale Res. Lett., 14, 78 (2019)
Huang X, Wang R, Jiao T, Zou G, Zhan F, Yin J, Zhang L, Zhou J, Peng Q, ACS Omega, 4, 11897 (2019)
Furlanetto G, Formaro L, J. Colloid Interface Sci., 170(1), 169 (1995)
Venugopal N, Arunakumari N, Sohn KY, Int. J. Electrochem. Sci., 13, 2069 (2018)
Venugopal N, Moon JS, Park WW, Song HJ, Sohn KY, Int. J. Electrochem. Sci., 13, 8313 (2018)
Wang CM, Baer DR, Bruemmer SM, Engelhard MH, Bowden ME, Sundararajan JA, Qiang Y, J. Nanosci. Nanotechnol., 11, 8488 (2011)
Cao Y, Yuan F, Yao M, Bang JH, Lee JH, Cryst. Eng. Comm., 16, 826 (2014)
Pralong V, Delahaye-Vidal A, Beaudoin B, Gerand B, Tarascon JM, J. Mater. Chem., 9, 955 (1999)
Zeng HC, Lim YY, J. Mater. Res., 15, 6 (2000)
Ayyappan S, Gopalan RS, Subbanna GN, Rao CNR, J. Mater. Res., 12, 398 (1997)
He T, Chen D, Jiao X, Wang Y, Duan Y, Chem. Mater., 17, 4023 (2005)
Hadjiev VH, Iliev MN, Vergilov IV, J. Phys. C: Solid State Phys., 21, L199 (1988)
Lee DY, Yoon SY, Shrestha NK, Lee SH, Ahn H, Han SH, Microporous Mesoporous Mater., 153, 163 (2012)
Jafta CJ, Nkosi F, le Roux L, Mathe MK, Kebede M, Makgopa K, Song Y, Tong D, Oyama M, Manyala N, Chen SW, Ozoemena KI, Electrochim. Acta, 110, 228 (2013)
(a) Wang G, Shen X, Horvat J, Wang B, Liu H, Wexler D, Yao J, J. Phys. Chem., 113, 4357 (2009); (b) Beguin F, Presser V, Balducci A, Frackowiak E, Adv. Mater., 26, 2219 (2014).
Cui L, Li J, Zhang XG, J. Appl. Electrochem., 39(10), 1871 (2009)
Wang L, Liu X, Wang X, Yang X, Lu L, J. Mater. Sci., 22, 601 (2011)
Xiao YH, Cao YB, Gong YY, Zhang AQ, Zhao JH, Fang SM, Jia DZ, Li F, J. Power Sources, 246, 926 (2014)