Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 26, 2019
Accepted July 9, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Upcycling of lignin waste to activated carbon for supercapacitor electrode and organic adsorbent
Youn-Ki Lee1 2
Sangchul Chung3
Sang Youp Hwang4
Sungho Lee1
Kwang Sup Eom2
Seung Bin Hong5
Gwan Gyu Park5
Byung-Joo Kim6
Jung-Joon Lee3†
Han-Ik Joh5†
1Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 55324, Korea 2School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea 3Research and Development Center, GS Caltex Corporation, 359, Expo-ro, Yuseong-gu, Daejeon 34122, Korea 4Plant Engineering Division, Institute for Advanced Engineering, 175-28 Goan-ro 51, Baegam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do 17180, Korea 5Department of Energy Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea 6Research Center for Carbon Convergence Materials, Korea Institute of Carbon Convergence Technology, Jeonju 54853, Korea
jjking@gscaltex.com
Korean Journal of Chemical Engineering, September 2019, 36(9), 1543-1547(5), 10.1007/s11814-019-0340-9
Download PDF
Abstract
We introduce a facile strategy to upcycle lignin waste to valuable activated carbon (AC). Unlike conventional preparation processes of AC, such as high-temperature carbonization above 600 °Cfollowed by chemical or physical activation, we synthesized AC through low-carbonization (~300 °C), ball-milling, and thermal activation. Lowtemperature carbonization effectively led to the formation of the micro-pores and simultaneously high yield. Uniform activated morphology of char lignin is achieved through a ball-milling process. The as-synthesized AC exhibited a large specific surface area of 1075.18m2 g-1, high specific capacitance of 115.1 F g-1, and excellent adsorbability of 0.23 gtoluene per gactivated carbon. Therefore, we believe that the presented facile strategy could lead to the realization of upcycling of lignin waste to highly useful AC.
References
Chatterjee S, Saito T, ChemSusChem., 8, 3941 (2015)
Duval A, Lawoko M, React. Funct. Polym., 85, 78 (2014)
Barta K, Anastas P, Beach E, Hansen T, Warner G, Foley P, U.S. Patent, 10,059,650 (2018).
Belgacem MN, Gandini A, Monomers, polymers and composites from renewable resources, Amsterdam, Elsevier (2008).
Joh HI, Song HK, Lee CH, Yun JM, Jo SM, Lee S, Na SI, Chien AT, Kumar S, Carbon, 70, 308 (2014)
Joh HI, Song HK, Yi KB, Lee S, Carbon, 53, 409 (2013)
Sircar S, Golden TC, Rao MB, Carbon, 34, 1 (1996)
Suhas, Carrott PJM, Carrott MMLR, Bioresour. Technol., 98(12), 2301 (2007)
Gao Z, Zhang Y, Song N, Li X, Mater. Res. Lett., 5, 69 (2017)
DA, Hegde G, RSC Adv., 5, 88339 (2015)
Kumar A, Hegde H, Manaf SABA, Ngaini Z, Sharma KV, Chem. Commun., 50, 12702 (2014)
Gonzalez-Serrano E, Cordero T, Rodriguez-Mirasol J, Cotoruelo L, Rodriguez JJ, Water Res., 38, 3043 (2004)
Paterson RJ, Lignin: properties and applications in biotechnology and bioenergy, Nova Science Publishers (2012).
Yorgun S, Vural N, Demiral H, Microporous Mesoporous Mater., 122, 189 (2009)
Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A, Carbon, 41, 267 (2003)
Kou T, Yao B, Liu T, Li Y, J. Mater. Chem. A., 5, 17151 (2017)
Ma X, Yang H, Yu L, Chen Y, Li Y, Materials, 7, 4431 (2014)
Rodriguez-Mirasol J, Cordero T, Rodriguez JJ, Energy Fuels, 7, 133 (1993)
Xie XF, Goodell B, Zhang DJ, Nagle DC, Qian YH, Peterson ML, Jellison J, Bioresour. Technol., 100(5), 1797 (2009)
Kijima M, Hirukawa T, Hanawa F, Hata T, Bioresour. Technol., 102(10), 6279 (2011)
Brebu M, Cazacu G, Chirila O, Cell. Chem. Technol., 45, 43 (2011)
Brebu M, Vasile C, Cell. Chem. Technol., 44, 353 (2010)
Alen R, Kuoppala E, Oesch P, J. Anal. Appl. Pyrolysis, 36, 137 (1996)
Rodrigues J, Graca J, Pereira H, J. Anal. Appl. Pyrolysis, 58-59, 481 (2001)
Yang D, Zhong LX, Yuan TQ, Peng XW, Sun RC, Ind. Crop. Prod., 43, 141 (2013)
Oh K, Lee S, Park S, Ku BC, Lee SH, Bang YH, Joh HI, Sci. Adv. Mater., 9, 1566 (2017)
Arenas E, Chejne F, Carbon, 42, 2451 (2004)
Zolin A, Jensen AD, Jensen PA, Dam-Johansen K, Fuel, 81(8), 1065 (2002)
Azargohar R, Dalai AK, Microporous Mesoporous Mater., 85, 219 (2005)
Lashaki MJ, Fayaz M, Wang H, Hashisho Z, Philips JH, Anderson JE, Nichols M, Environ. Sci. Technol., 46, 4083 (2012)
Duval A, Lawoko M, React. Funct. Polym., 85, 78 (2014)
Barta K, Anastas P, Beach E, Hansen T, Warner G, Foley P, U.S. Patent, 10,059,650 (2018).
Belgacem MN, Gandini A, Monomers, polymers and composites from renewable resources, Amsterdam, Elsevier (2008).
Joh HI, Song HK, Lee CH, Yun JM, Jo SM, Lee S, Na SI, Chien AT, Kumar S, Carbon, 70, 308 (2014)
Joh HI, Song HK, Yi KB, Lee S, Carbon, 53, 409 (2013)
Sircar S, Golden TC, Rao MB, Carbon, 34, 1 (1996)
Suhas, Carrott PJM, Carrott MMLR, Bioresour. Technol., 98(12), 2301 (2007)
Gao Z, Zhang Y, Song N, Li X, Mater. Res. Lett., 5, 69 (2017)
DA, Hegde G, RSC Adv., 5, 88339 (2015)
Kumar A, Hegde H, Manaf SABA, Ngaini Z, Sharma KV, Chem. Commun., 50, 12702 (2014)
Gonzalez-Serrano E, Cordero T, Rodriguez-Mirasol J, Cotoruelo L, Rodriguez JJ, Water Res., 38, 3043 (2004)
Paterson RJ, Lignin: properties and applications in biotechnology and bioenergy, Nova Science Publishers (2012).
Yorgun S, Vural N, Demiral H, Microporous Mesoporous Mater., 122, 189 (2009)
Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A, Carbon, 41, 267 (2003)
Kou T, Yao B, Liu T, Li Y, J. Mater. Chem. A., 5, 17151 (2017)
Ma X, Yang H, Yu L, Chen Y, Li Y, Materials, 7, 4431 (2014)
Rodriguez-Mirasol J, Cordero T, Rodriguez JJ, Energy Fuels, 7, 133 (1993)
Xie XF, Goodell B, Zhang DJ, Nagle DC, Qian YH, Peterson ML, Jellison J, Bioresour. Technol., 100(5), 1797 (2009)
Kijima M, Hirukawa T, Hanawa F, Hata T, Bioresour. Technol., 102(10), 6279 (2011)
Brebu M, Cazacu G, Chirila O, Cell. Chem. Technol., 45, 43 (2011)
Brebu M, Vasile C, Cell. Chem. Technol., 44, 353 (2010)
Alen R, Kuoppala E, Oesch P, J. Anal. Appl. Pyrolysis, 36, 137 (1996)
Rodrigues J, Graca J, Pereira H, J. Anal. Appl. Pyrolysis, 58-59, 481 (2001)
Yang D, Zhong LX, Yuan TQ, Peng XW, Sun RC, Ind. Crop. Prod., 43, 141 (2013)
Oh K, Lee S, Park S, Ku BC, Lee SH, Bang YH, Joh HI, Sci. Adv. Mater., 9, 1566 (2017)
Arenas E, Chejne F, Carbon, 42, 2451 (2004)
Zolin A, Jensen AD, Jensen PA, Dam-Johansen K, Fuel, 81(8), 1065 (2002)
Azargohar R, Dalai AK, Microporous Mesoporous Mater., 85, 219 (2005)
Lashaki MJ, Fayaz M, Wang H, Hashisho Z, Philips JH, Anderson JE, Nichols M, Environ. Sci. Technol., 46, 4083 (2012)