ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 16, 2019
Accepted July 9, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Fluidization of fine powder assisted by vertical vibration in fluidized bed reactor

1Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea 2Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
Korean Journal of Chemical Engineering, September 2019, 36(9), 1548-1556(9), 10.1007/s11814-019-0339-2
downloadDownload PDF

Abstract

This study examined the fluidization phenomenon using vertical vibration for fine powder in a mechanical vertical vibration for fluidized bed reactor. The fine powder used belongs to the Geldart group C with a mean powder size of 2.25 μm. It was verified that channeling and agglomeration phenomena appeared with a fluidization method without vibration of fine powders belonging to the group C. To keep fluidization phenomenon of the agglomerating fine powder superior, a smooth fluidization condition was made by giving vertical vibration function and removing cohesion between particles. To verify the smooth fluidization condition of the fine powder, changes in the bed height to diameter (H/D) ratio of the fluidized bed reactor, pressure drop due to changes of vibration frequency with superficial gas velocity, minimum fluidization velocity, and changing characteristics of bed expansion ratio were investigated experimentally. This study examined pressure drops from H/D variable of values 1 and 2, minimum fluidization velocity, and bed expansion ratios at 0 to 60 Hz of vibration frequency. There is a trend that as vibration frequency increases, the pressure drop is stabilized, minimum fluidization velocity decreases, and the bed expansion ratio increases.

References

Zhang XL, Han YX, Sun YS, Li YJ, Powder Technol., 352, 16 (2019)
Lee JR, Hasolli N, Jeon SM, Lee KS, Kim KD, Kim YH, Lee KY, Park YO, Korean J. Chem. Eng., 35(11), 2321 (2018)
Chirone R, Raganati F, Ammendola P, Barletta D, Lettieri P, Poletto M, Powder Technol., 323, 1 (2018)
Valverde JM, Castellanos A, Quintanilla MAS, Phys. Rev. E, 64, 021302 (2001)
Santana D, Rodriguez J, Macias-Machin A, Powder Technol., 106(1-2), 110 (1999)
Li JL, Kato K, Powder Technol., 118(3), 209 (2001)
Venkatesh RD, Chaouki J, Klvana D, Powder Technol., 89(3), 179 (1996)
Ammendola P, Chirone R, Raganati F, Adv. Powder Technol., 22(2), 174 (2011)
Mawatari Y, Koide T, Tatemoto Y, Uchida S, Noda K, Powder Technol., 123(1), 69 (2002)
Levy EK, Celeste B, Powder Technol., 163(1-2), 41 (2006)
Mawatari Y, Hamada Y, Yamamura M, Kage H, Proceida Eng., 102, 945 (2015)
Ajbar A, Bakhbakhi Y, Ali S, Asif M, Powder Technol., 206(3), 327 (2011)
Guo QJ, Liu H, Shen WZ, Yan XH, Jia RG, Chem. Eng. J., 119(1), 1 (2006)
Escudero D, Heindel TJ, Chem. Eng. J., 231, 68 (2013)
Ammendola P, Chirone R, Raganati F, Chem. Eng. Process., 50(8), 885 (2011)
Rhodes MJ, Wang XS, Forsyth AJ, Gan KS, Phadtajaphan S, Chem. Eng. Sci., 56(18), 5429 (2001)
Yu Q, Dave RN, Zhu C, Quevedo JA, Pfeffer R, AIChE J., 51, 1971 (2005)
Viscusi A, Ammendola P, Astarita A, Raganati F, Scherillo F, Squillace A, Chirone R, Carrino L, J. Mater. Process. Technol., 231, 265 (2016)
Scicolone JV, Lepek D, Louie L, Dave RN, J. Nanopart. Res., 15, 1434 (2013)
Shabanian J, Rouzbeh J, Chaouki J, Int. Rev. Chem. Eng., 4, 16 (2012)
Espin MJ, Quintanilla MAS, Valverde JM, Chem. Eng. J., 361, 50 (2019)
Barletta D, Poletto M, Powder Technol., 225, 93 (2012)
Massimilla L, Donsi G, Powder Technol., 15, 253 (1976)
Zheng XL, Yin SW, Ding YL, Wang L, Powder Technol., 344, 133 (2019)
Nam CH, Pfeffer R, Dave RN, Sundaresan S, AIChE J., 50(8), 1776 (2004)
Kaliyaperumal S, Barghi S, Briens L, Rohani S, Zhu J, Particuology, 9, 279 (2011)
Geldart D, Gas Fluidization Technol., 97 (1986)
Kantarci N, Borak F, Ulgen KO, Process Biochem., 40(7), 2263 (2005)
Kunii D, Levenspiel O, Chem. Eng. Sci., 52(15), 2471 (1997)
Wei L, Lu Y, Zhu J, Jiang G, Hu J, Teng H, Korean J. Chem. Eng., 35(10), 2117 (2018)
Vanni F, Caussat B, Ablitzer C, Brothier M, Powder Technol., 277, 268 (2015)
Wank JR, George SM, Weimer AW, Powder Technol., 121(2-3), 195 (2001)
Wen CY, Yu YH, AIChE J., 12, 610 (1966)
Pacek AW, Nienow AW, Powder Technol., 60, 145 (1990)
Wang Y, Gu GS, Wei F, Wu J, Powder Technol., 124(1-2), 152 (2002)
Liu HP, Zhang LY, Chen TP, Wang SW, Han ZJ, Wu SH, Chem. Eng. J., 262, 579 (2015)
Mawatari Y, Ikegami T, Tatemoto Y, Noda K, J. Chem. Eng. Jpn., 36(3), 277 (2003)
Li HZ, Tong H, Chem. Eng. Sci., 59(8-9), 1897 (2004)
Wang JW, Tan LH, van der Hoef MA, Annaland MV, Kuipers JAM, Chem. Eng. Sci., 66(9), 2001 (2011)
Vivacqua V, Vashisth S, Hebrard G, Grace JR, Epstein N, Chem. Eng. Sci., 80, 419 (2012)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로