ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 17, 2019
Accepted October 12, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Low temperature adsorption of nitric oxide on cerium impregnated biomass-derived biochar

Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia 1Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol 47148, Iran
Korean Journal of Chemical Engineering, January 2020, 37(1), 130-140(11), 10.1007/s11814-019-0405-9
downloadDownload PDF

Abstract

This study investigates the catalytic oxidation of NO to NO2 over biomass-derived biochar at ambient temperature. Rubber seed shell (RSS) was used as lignocellulosic waste to develop biochar for NO capture. The NO adsorption capacity of pristine biochar was low, about 17.61mg/g at 30 °C. To enhance the NO uptake capacity of biochar, cerium (Ce) was introduced into the biochar surface through simple impregnation method. Upon this, the NO adsorption capacity of 3 wt% Ce-loaded biochar profoundly increased to 75.59mg/g at the same adsorption condition. This was confidently due to the excellent oxygen storage capacity of ceria which could react with free active sites on the biochar surface to form oxidized cites C(O). Characterization results indicated that the adsorbed species was in the form of -O-N=O, suggesting that the adsorption of NO was followed by reaction with surface oxidized sites to form NO2. Studying the kinetics of the NO adsorption using pseudo-second order, Avrami and Elovich models showed that chemisorption was the chief mechanism that governed the adsorption process and the activation energy for NO adsorption was estimated to be around -45 kJ/mol.

References

Izquierdo MT, Rubio B, Environ. Sci. Technol., 32, 4017 (1998)
Tang X, Gao F, Xiang Y, Yi H, Zhao S, Catal. Commun., 64, 12 (2015)
Zhang X, Lin R, Energy Procedia, 158, 4805 (2019)
Gao FY, Chu C, Zhu WJ, Tang XL, Yi HH, Zhang RC, Appl. Surf. Sci., 479, 548 (2019)
Guo YY, Li YR, Zhu TY, Ye M, Fuel, 143, 536 (2015)
Chen JH, Cao FF, Chen SZ, Ni MJ, Gao X, Cen KF, Appl. Surf. Sci., 317, 26 (2014)
Rubel AM, Stewart M, Stencel J, J. Mater. Res., 10, 562 (1995)
Wang XJ, Xu XC, Liu ST, Zhang Y, Zhao CQ, Yang FL, J. Hazard. Mater., 312, 175 (2016)
Rubel AM, Stencel JM, Energy Fuels, 10(3), 704 (1996)
Chen H, Wang Y, Lyu YK, Mol. Catal., 454, 21 (2018)
Adapa S, Gaur V, Verma N, Chem. Eng. J., 116(1), 25 (2006)
Salman AU, Enger BC, Auvray X, Lodeng R, Menon M, Waller D, Ronning M, Appl. Catal. A: Gen., 564, 142 (2018)
Cao F, Chen J, Ni M, Song H, Xiao G, Wu W, Gao X, Cen K, Appl. Surf. Sci., 4, 16281 (2014)
Stoyanova D, Georgieva P, Avramova I, Aleksieva K, Marinova D, Mehandjiev D, J. Rare Earths, 37, 151 (2019)
Mihaylov MY, Ivanova EZ, Aleksandrov HA, Petkov PS, Vayssilov GN, Hadjiivanov KI, Mol. Catal., 451, 114 (2018)
Fang C, Zhang D, Shi L, Gao R, Li H, Ye L, Zhang J, Catal. Sci. Technol., 3, 803 (2013)
Al-Rahbi AS, Williams PT, Waste Manag., 49, 188 (2016)
You FT, Yu GW, Wang Y, Xing ZJ, Liu XJ, Li J, Appl. Surf. Sci., 413, 387 (2017)
You FT, Yu GW, Xing ZJ, Li J, Xie SY, Li CX, Wang G, Ren HY, Wang Y, Appl. Surf. Sci., 471, 633 (2019)
Lee YW, Choi DK, Park JW, Carbon, 40, 1409 (2002)
Li XC, Dong Z, Dou JX, Yu JL, Tahmasebi A, Fuel Process. Technol., 148, 91 (2016)
Sumathi S, Bhatia S, Lee KT, Mohamed AR, Chem. Eng. J., 162(1), 51 (2010)
Wang W, Guo R, Pan W, Hu G, J. Rare Earths, 36, 588 (2018)
Wang W, Li W, Guo R, Chen Q, Wang Q, Pan W, Hu G, J. Rare Earths, 34, 876 (2016)
Yu X, Wu X, Chen Z, Huang Z, Jing G, Mol. Catal., 476, 110512 (019)
Kudahi SN, Noorpoor AR, Mahmoodi NM, J. CO2 Util., 21, 17 (2017)
Lahijani P, Mohammadi M, Mohamed AR, J. CO2 Util., 26, 281 (2018)
Juang RS, Chen ML, Ind. Eng. Chem. Res., 36(3), 813 (1997)
Wu FC, Tseng RL, Juang RS, Chem. Eng. J., 150(2-3), 366 (2009)
Largitte L, Pasquier R, Chem. Eng. Res., 109, 495 (2016)
Andreoli E, Cullum L, Barron AR, Ind. Eng. Chem. Res., 54(3), 878 (2015)
Teng H, Suuberg EM, J. Phy. Chem., 97, 478 (1993)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로