ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 25, 2019
Accepted November 12, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Gas hydrate formation by allyl alcohol and CH4: Spectroscopic and thermodynamic analysis

Department of Energy and Resources Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Korea
minjun.cha@kangwon.ac.kr
Korean Journal of Chemical Engineering, January 2020, 37(1), 151-158(8), 10.1007/s11814-019-0429-1
downloadDownload PDF

Abstract

We discovered a new structure II (sII) hydrate forming agent, allyl alcohol (AA), in the presence of methane (CH4) for the first time, and characterized the crystal structure, guest distribution, and phase equilibria of the (AA+CH4) hydrate. Using solid-state 13C NMR and Raman spectroscopy, the crystal structure of the (AA+CH4) hydrate was confirmed to be a sII hydrate, and the CH4 molecule was found to be encapsulated in both the large and small cages of the sII hydrate. In addition, AA was found to be included in the large cages of the sII hydrate in the Gauche-Gauche form based on the measured- and calculated-NMR spectra. Notably, we investigated the free OH signal of AA in the Raman spectra to determine whether hydrogen bonding occurred between host and guest molecules; however, we could not determine whether the existence of the free OH signal was consistent with this host-guest interaction. To clearly identify the crystal structure and possible host-guest interactions, a high-resolution powder X-ray diffraction (HRPD) pattern of our (AA+CH4) hydrate sample was analyzed using Rietveld analysis with the direct space method. The crystal structure of the (AA+CH4) hydrate was assigned as the cubic Fd3m structure with a lattice constant of 17.1455 A. In particular, the shortest distance between the AA molecule in the hydrate cages and an oxygen atom in the host water was estimated to be 2.55 A; thus, we concluded that the hydroxyl group of the AA molecule was hydrogen-bonded to the host water framework. Finally, we measured the phase equilibrium conditions of the binary (AA+CH4) hydrate and found that the equilibrium pressure conditions of the binary (AA+CH4) hydrate were slightly higher than those of the pure CH4 hydrate.

References

Sloan ED, Koh CA, Clathrate Hydrates of Natural Gases, 3rd Ed. CRC Press Boca Raton (2008).
Sloan ED, Nature, 426, 353 (2003)
Cha M, Shin K, Kim J, Chang D, Seo Y, Lee H, Kang SP, Chem. Eng. Sci., 99, 184 (2013)
Mimachi H, Takeya S, Yoneyama A, Hyodo K, Takeda T, Gotoh Y, Murayama T, Chem. Eng. Sci., 118, 208 (2014)
Veluswamy HP, Kumar A, Seo Y, Lee JD, Linga P, Appl. Energy, 216, 262 (2018)
Aman ZM, Brown EP, Sloan ED, Sum AK, Koh CA, Phys. Chem. Chem. Phys., 13(44), 19796 (2011)
Seo YT, Kang SP, Lee H, Fluid Phase Equilib., 189, 99 (2001)
Seo Y, Kang SP, Lee J, Seol J, Lee H, J. Chem. Eng. Data, 56(5), 2316 (2011)
Jin Y, Kida M, Nagao J, J. Phys. Chem. C, 119(17), 9069 (2015)
Muromachi S, Nakajima T, Ohmura R, Mori YH, Fluid Phase Equilib., 305(2), 145 (2011)
Shin K, Cha M, Lee W, Kim H, Jung Y, Dho J, Kim J, Lee H, J. Am. Chem. Soc., 133(50), 20399 (2011)
Florusse LJ, Peters CJ, Schoonman J, Hester KC, Koh CA, Dec SF, Marsh KN, Sloan ED, Science, 306(5695), 469 (2004)
Lokshin KA, Zhao YS, He DW, Mao W, Mao HK, Hemley RJ, Lobanov MW, Greenblatt M, Abstr. Pap. Am. Chem. S, 229, U589 (2005)
Wang WX, Bray CL, Adams DJ, Cooper AI, J. Am. Chem. Soc., 130(35), 11608 (2008)
Daitoku T, Utaka Y, Appl. Energy, 87(8), 2682 (2010)
Kim NJ, Lee JH, Cho YS, Chun W, Energy, 35(6), 2717 (2010)
Kiran BS, Sowjanya K, Prasad PSR, Yoon JH, Oil Gas Sci. Technol., 74, 12 (2019)
Chong ZR, He TB, Babu P, Zheng JN, Linga P, Desalination, 463, 69 (2019)
Obrey SJ, Currier RP, Jebrail FF, Le LA, Martinez RJ, Sedillo MA, Yang DL, Tam S, Deppe G, Lee A, Spencer DF, Abstr. Pap. Am. Chem. S, 231, INOR23 (2006)
Park J, Seo YT, Lee JW, Lee H, Catal. Today, 115(1-4), 279 (2006)
Park Y, Kim DY, Lee JW, Huh DG, Park KP, Lee J, Lee H, Proc. Natl. Acad. Sci. USA, 103, 12690 (2006)
Lee HJ, Lee JD, Kim YD, Kor. J. Mater. Res., 18(12), 650 (2008)
Yang YJ, Shin D, Choi S, Woo Y, Lee JW, Kim D, Shin HY, Cha M, Yoon JH, Environ. Sci. Technol., 51(6), 3550 (2017)
Koh DY, Kang H, Kim DO, Park J, Cha M, Lee H, Chemsuschem., 5(8), 1443 (2012)
Shin K, Park Y, Cha MJ, Park KP, Huh DG, Lee J, Kim SJ, Lee H, Energy Fuels, 22(5), 3160 (2008)
Farhadi A, Mohebbi V, Int. J. Hydrog. Energy, 42(31), 19967 (2017)
Youn Y, Cha M, Kwon M, Park J, Seo Y, Lee H, Korean J. Chem. Eng., 33(5), 1712 (2016)
Seo SD, Hong SY, Sum AK, Lee KH, Lee JD, Lee BR, Chem. Eng. J., 370, 980 (2019)
Choi W, Lee Y, Mok J, Lee S, Lee JD, Seo Y, Chem. Eng. J., 358, 598 (2019)
Lee H, Ryu H, Lim JH, Kim JO, Lee JD, Kim S, Desalin Water Treat., 57(19), 9009 (2016)
Kang KC, Linga P, Park KN, Choi SJ, Lee JD, Desalination, 353, 84 (2014)
Cha JH, Seol Y, Acs Sustain. Chem. Eng., 1(10), 1218 (2013)
Park KN, Hong SY, Lee JW, Kang KC, Lee YC, Ha MG, Lee JD, Desalination, 274(1-3), 91 (2011)
Cha M, Shin K, Seo Y, Shin JY, Kang SP, J. Phys. Chem. A, 117(51), 13988 (2013)
Cha MJ, Baek S, Lee H, Lee JW, Rsc Adv., 4(50), 26176 (2014)
Cha MJ, Baek S, Morris J, Lee JW, Chem-Asian J., 9(1), 261 (2014)
Cha MJ, Couzis A, Lee JW, Langmuir, 29(19), 5793 (2013)
Cha MJ, Hu Y, Sum AK, Fluid Phase Equilib., 413, 2 (2016)
Cha MJ, Lee H, Lee JW, J. Phys. Chem. C, 117(45), 23515 (2013)
Cha M, Shin K, Lee H, J. Phys. Chem. B, 113(31), 10562 (2009)
Alavi S, Shin K, Ripmeester JA, J. Chem. Eng. Data, 60(2), 389 (2015)
Shin K, Udachin KA, Moudrakovski IL, Leek DM, Alavi S, Ratcliffe CI, Ripmeester JA, Proc. Natl. Acad. Sci. USA, 110(21), 8437 (2013)
Lee JW, Kang SP, J. Phys. Chem. B, 116(1), 332 (2012)
Alavi S, Takeya S, Ohmura R, Woo TK, Ripmeester JA, J. Chem. Phys., 133(7), 074505 (2010)
Cha MJ, Shin KC, Lee H, Korean J. Chem. Eng., 34(9), 2514 (2017)
Ohmura R, Takeya S, Uchida T, Ikeda IY, Ebinuma T, Narita H, Fluid Phase Equilib., 221(1-2), 151 (2004)
Sinehbaghizadeh S, Javanmardi J, Mohammadi AH, J. Chem. Thermodyn., 125, 64 (2018)
Youn Y, Cha M, Lee H, ChemphysChem, 16(13), 2876 (2015)
Zhurko FV, Manakov AY, Kosyakov VI, Chem. Eng. Sci., 65(2), 900 (2010)
Udachin K, Alavi S, Ripmeester JA, J. Chem. Phys., 134(12), 054702 (2011)
Imai M, Oto Y, Nitta S, Takeya S, Ohmura R, J. Chem. Thermodyn., 47, 17 (2012)
Imai S, Miyake K, Ohmura R, Mori YH, J. Chem. Eng. Data, 52(3), 1056 (2007)
Ohmura R, Takeya S, Uchida T, Ebinuma T, Ind. Eng. Chem. Res., 43(16), 4964 (2004)
Takeya S, Udachin KA, Moudrakovski IL, Susilo R, Ripmeester JA, J. Am. Chem. Soc., 132(2), 524 (2010)
Rodriguez-Carvajal J, Phys. B: Condens. Matter, 192, 55 (1993)
Favre-Nicolin V, Cerny R, J. Appl. Crystallogr., 35, 734 (2002)
Ahn YH, Lee B, Shin K, Crystals, 8(8), 328 (2018)
Park KH, Jeong D, Yoon JH, Cha M, Fluid Phase Equilib., 493, 43 (209)
Shin K, Park Y, Hong JH, Lee H, Korean J. Chem. Eng., 24(5), 843 (2007)
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, et al., Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford CT, 2004).
Shin K, Moudrakovski IL, Ratcliffe CI, Ripmeester JA, Angew. Chem.-Int. Edit., 56(22), 6171 (2017)
Ahn YH, Youn Y, Cha M, Lee H, Rsc Adv., 7(20), 12359 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로