ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 14, 2019
Accepted November 14, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Carbon supported palladium-copper bimetallic catalysts for promoting electrochemical oxidation of formic acid and its utilization in direct formic acid fuel cell

Graduate school of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea 1Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, Chungbuk 27469, Korea
Korean Journal of Chemical Engineering, January 2020, 37(1), 176-183(8), 10.1007/s11814-019-0432-6
downloadDownload PDF

Abstract

Carbon supported palladium-copper (Pd-Cu) bimetallic catalysts (PdxCuy/Cs) are fabricated by modified polyol method to enhance the reaction rate of formic acid oxidation reaction (FAOR) and the performance of direct formic acid fuel cell (DFAFC) through weakening the bond with the intermediate of formic acid. According to the evaluations, when the ratio of Pd and Cu is 3 : 1 (Pd3Cu1/C), catalytic activity is best. Its maximum current density is 1.68-times better than that of commercial Pd/C. Even from the optical and spectroscopic characterizations, such as TEM, EDS, XPS and XRD, Pd3Cu1/C shows an optimal particle size and a higher degree of alloying. This is because in Pd3Cu1/C catalyst, the d-band center that induces the weakening in adsorption of formate anion groups to Pd surface is most positively shifted, and this positive shift promotes the reaction rate of FAOR, which is the rate determining step. When the performance of DFAFCs using the PdxCuy/C catalysts is measured, the maximum power density (MPD) of DFAFC using Pd3Cu1/C catalyst is 158mW cm?2, and this is the best MPD compared to that of DFAFCs using other PdxCuy/C catalysts. In addition, in a comparison with commercial Pd/C catalyst, when the same amount of catalyst is loaded, MPD of DFAFC using Pd3Cu1/C catalyst is 22.5% higher than that of DFAFC using commercial Pd/C.

References

Hansen K, Breyer C, Lund H, Energy, 175, 471 (2019)
Jain S, Chen HY, Schwank J, J. Power Sources, 160(1), 474 (2006)
Lipman TE, Edwards JL, Kammen DM, Energy Policy, 32(1), 101 (2004)
Noh C, Jung M, Henkensmeier D, Nam SW, Kwon Y, ACS Appl. Mater. Interfaces, 9, 36799 (2017)
Jung HY, Jeong S, Kwon Y, J. Electrochem. Soc., 163(1), A5090 (2016)
Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 187 (2018)
Jeong S, Kim LH, Kwon Y, Kim S, Korean J. Chem. Eng., 31(11), 2081 (2014)
Hyun KH, Kang SY, Kwon YC, Korean J. Chem. Eng., 36(3), 500 (2019)
Park HJ, Kim KM, Kim HY, Kim DW, Won YS, Kim SK, Korean J. Chem. Eng., 35(7), 1547 (2018)
Cheng X, Shi Z, Glass N, Zhang L, Zhang JJ, Song DT, Liu ZS, Wang HJ, Shen J, J. Power Sources, 165(2), 739 (2007)
Kim T, Lee S, Park H, Renew. Sust. Energ. Rev., 15, 3676 (2011)
Hyun K, Lee JH, Yoon CW, Kwon Y, Int. J. Electrochem. Sci., 8, 11752 (2013)
Aceves SM, Espinosa-Loza F, Ledesma-Orozco E, Ross TO, Weisberg AH, Brunner TC, Kircher O, Int. J. Hydrog. Energy, 35(3), 1219 (2010)
Hua TQ, Ahluwalia RK, Peng JK, Kromer M, Lasher S, McKenney K, Law K, Sinha J, Int. J. Hydrog. Energy, 36(4), 3037 (2011)
Christwardana M, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 3009 (2017)
Christwardana M, Ji JY, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 2916 (2017)
Demirci UB, J. Power Sources, 169(2), 239 (2007)
Qian WM, Wilkinson DP, Shen J, Wang HJ, Zhang JJ, J. Power Sources, 154(1), 202 (2006)
Yu XW, Pickup PG, J. Power Sources, 182(1), 124 (2008)
Hwang BC, Oh SH, Lee MS, Lee DH, Park KP, Korean J. Chem. Eng., 35(11), 2290 (2018)
Choi JH, Jeong KJ, Dong Y, Han J, Lim TH, Lee JS, Sung YE, J. Power Sources, 163(1), 71 (2006)
Zhu YM, Ha SY, Masel RI, J. Power Sources, 130(1-2), 8 (2004)
Heinzel A, Barragan VM, J. Power Sources, 84(1), 70 (1999)
Baik SM, Kim J, Han J, Kwon Y, Int. J. Hydrog. Energy, 36(19), 12583 (2011)
Baik SM, Han J, Kim J, Kwon Y, Int. J. Hydrog. Energy, 36(22), 14719 (2011)
Kim S, Han J, Kwon Y, Lee KS, Lim TH, Nam SW, Jang JH, Electrochim. Acta, 56(23), 7984 (2011)
Kwon Y, Baek S, Kwon B, Kim J, Han J, Korean J. Chem. Eng., 27(3), 836 (2010)
Liu ZL, Hong L, Tham MP, Lim TH, Jiang HX, J. Power Sources, 161(2), 831 (2006)
Uwitonze N, Chen YX, Chem. Sci. J., 8, 100016 (2017)
Yu Y, Koh YE, Lim H, Jeong B, Isegawa K, Kim D, Ueda K, Kondoh H, Mase K, Crumlin EJ, Ross PN, Gallet J, Bournel F, Mun BS, J. Phys. Condens. Matter, 29, 464001 (2017)
Kwon Y, Baik SM, Han J, Kim J, Bull. Korean Chem. Soc., 33, 2539 (2012)
Cao J, Zhu Z, Zhao W, Xu J, Chen Z, Chin. J. Chem., 34, 1086 (2016)
Hong JW, Kim D, Lee YW, Kim M, Kang SW, Han SW, Angew. Chem., 123, 9038 (2011)
Xiao X, Kang TU, Nam HB, Bhang SH, Lee SY, Ahn JP, Yu TY, Korean J. Chem. Eng., 35(12), 2379 (2018)
Liao MY, Hu Q, Zheng JB, Li YH, Zhou H, Zhong CJ, Chen BH, Electrochim. Acta, 111, 504 (2013)
Matin MA, Jang JH, Kwon YU, J. Power Sources, 262, 356 (2014)
Hu SZ, Munoz F, Noborikawa J, Haan J, Scudiero L, Ha S, Appl. Catal. B: Environ., 180, 758 (2016)
Yang S, Yang J, Chung Y, Kwon Y, Int. J. Hydrog. Energy, 42(27), 17211 (2017)
Chen M, Wang ZB, Zhou K, Chu YY, Fuel Cells, 10, 1171 (2010)
Herron JA, Scaranto J, Ferrin P, Li S, Mavrikakis M, ACS Catal., 4, 4434 (2014)
Scaranto J, Mavrikakis M, Surf. Sci., 650, 111 (2016)
Castegnaro MV, Gorgeski A, Balke B, Alves MCM, Morais J, Nanoscale, 8, 641 (2016)
Zhou WP, Lewera A, Larsen R, Masel RI, Bagus PS, Wieckowski A, J. Phys. Chem. B, 110(27), 13393 (2006)
Xu CX, Liu YQ, Wang JP, Geng HR, Qiu HJ, J. Power Sources, 199, 124 (2012)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로