ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 27, 2020
Accepted May 27, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Fischer-Tropsch Synthesis on Fe-Co-Pt/γ-Al2O3 catalyst: A mass transfer, kinetic and mechanistic study

Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, 98135-674, Iran 1Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, P. O. Box 98164-161, Zahedan, Iran
amireshraghi106@gmail.com
Korean Journal of Chemical Engineering, October 2020, 37(10), 1699-1708(10), 10.1007/s11814-020-0590-6
downloadDownload PDF

Abstract

Mass transfer limitations and kinetics studies were performed for Fischer-Tropsch Synthesis over spherical 10 wt% Fe-10wt% Co-0.5 wt% Pt/79.5 wt% γ-Al2O3 catalyst in a fixed bed reactor. The external mass transfer limitation was checked by studying the effect of gas hourly space velocity (GHSV) and feed flow rate (at constant GHSV) on CO conversion. Theoretical and practical methods were applied to assess the effect of catalyst pellet size on the internal mass transfer limitation. The results indicated there is external diffusion limitation for GHSV lower than 4,200 h-1. Both the theoretical and practical methods showed that the reaction is free of internal diffusion limitation with average particle sizes of 0.21 and 0.42 mm due to Thiele modulus smaller than 0.4, denoting that the rate of reaction is kinetically controlled. The kinetics results demonstrated the combined enol and carbide mechanism-based model was able to provide a good fit for the experimental data.

References

den Otter JH, Nijveld SR, de Jong KP, ACS Catal., 6(3), 1616 (2016)
Xue Y, Sun J, Abbas M, Chen Z, Wang P, Chen Y, Chen J, New J. Chem., 43(8), 3454 (2019)
Loedolff MJ, Goh BM, Koutsantonis GA, Fuller RO, New J. Chem., 42, 14894 (2018)
Ryu JH, Kang SH, Kim JH, Lee YJ, Jun KW, Korean J. Chem. Eng., 32(10), 1993 (2015)
Sedighi B, Feyzi M, Joshaghani M, J. Taiwan Inst. Chem. Eng., 50, 108 (2015)
Wang Y, Huang S, Teng X, Wang H, Wang J, Zhao Q, Wang Y, Ma X, Front. Chem. Sci. Eng., 14, 802 (2020)
Ma W, Jacobs G, Keogh RA, Bukur DB, Davis BH, Appl. Catal. A: Gen., 437-438, 1 (2012)
Calderone VR, Shiju NR, Ferre DC, Rothenberg G, Green Chem., 13(8), 1950 (2011)
Xu DY, Li WZ, Duan HM, Ge QJ, Xu HY, Catal. Lett., 102(3-4), 229 (2005)
Lommerts BJ, Graaf GH, Beenackers AACM, Chem. Eng. Sci., 55(23), 5589 (2000)
Bakhtiary-Davijany H, Dadgar F, Hayer F, Phan XK, Myrstad R, Venvik HJ, Pfeifer P, Holmen A, Ind. Eng. Chem. Res., 51(42), 13574 (2012)
Gorke O, Pfeifer P, Schubert K, Appl. Catal. A: Gen., 360(2), 232 (2009)
Veljkovic VB, Stamenkovic OS, Todorovic ZB, Lazic ML, Skala DU, Fuel, 88(9), 1554 (2009)
Becker H, Guttel R, Turek T, Catal. Sci. Technol., 6(1), 275 (2016)
Yang JH, Kim HJ, Chun DH, Lee HT, Hong JC, Jung H, Yang JI, Fuel Process Technol., 91(3), 285 (2010)
Rajadhyaksha RA, Doraiswamy LK, Catal. Rev., 13(1), 209 (1976)
Marinkovic DM, Miladinovic MR, Avramovic JM, Krstic IB, Stankovic MV, Stamenkovic OS, Jovanovic DM, Veljkovic VB, Energy Conv. Manag., 163, 122 (2018)
Pour AN, Housaindokht MR, Zarkesh J, Irani M, Babakhani EG, J. Ind. Eng. Chem., 18(2), 597 (2012)
Sonal, Kondamudi K, Pant KK, Upadhyayula S, Ind. Eng. Chem. Res., 56(16), 4659 (2017)
Moazami N, Wyszynski ML, Rahbar K, Tsolakis A, Mahmoudi H, Chem. Eng. Sci., 171, 32 (2017)
Mosayebi A, Abedini R, Int. J. Hydrog. Energy, 42(44), 27013 (2017)
Okeson TJ, Keyvanloo K, Lawson JS, Argyle MD, Hecker WC, Catal. Today, 261, 67 (2016)
Zhou LP, Hao X, Gao JH, Yang Y, Wu BS, Xu J, Xu YY, Li YW, Energy Fuels, 25(1), 52 (2011)
Mendez CI, Ancheyta J, Catal. Today, In Press (2020).
Chen W, Filot IAW, Pestman R, Hensen EJM, ACS Catal., 7(12), 8061 (2017)
Kaltschmitt M, Neuling U, Biokerosene: Status and prospects, Springer-Verlag Berlin Heidelberg, Germany (2017).
Williams H, Gnanamani KM, Jacobs G, Shafer DW, Coulliette D, Catalysts, 9(10), 857 (2019)
Pohlmann F, Jess A, Catal. Today, 275, 172 (2016)
Post MFM, Van't Hoog AC, Minderhoud JK, Sie ST, AIChE J., 35(7), 1107 (1989)
Wang YN, Xu YY, Xiang HW, Li YW, Zhang BJ, Ind. Eng. Chem. Res., 40(20), 4324 (2001)
Hallac BB, Keyvanloo K, Hedengren JD, Hecker WC, Argyle MD, Chem. Eng. J., 263, 268 (2015)
Thiele EW, Ind. Eng. Chem., 31(7), 916 (1939)
Vervloet D, Kapteijn F, Nijenhuis J, van Ommen JR, Catal. Sci. Technol., 2(6), 1221 (2012)
Levenspiel O, Chemical reaction engineering, Wiley, New York (1999).
Page JFL, Applied heterogeneous catalysis, Technip editions, Paris (1988).
Talebian-Kiakalaieh A, Amin NAS, J. Taiwan Inst. Chem. Eng., 59, 11 (2016)
Lim JY, McGregor J, Sederman AJ, Dennis JS, Chem. Eng. Sci., 141, 28 (2016)
Gonzo EE, Gottifredi JC, Catal. Rev., 25(1), 119 (1983)
Abdollahi M, Atashi H, Tabrizi FF, Adv. Powder Technol., 28(5), 1356 (2017)
Yang ZH, Lin YS, Ind. Eng. Chem. Res., 39(12), 4944 (2000)
Buelna G, Lin YS, Microporous Mesoporous Mater., 30(2), 359 (1999)
Van Der Voort P, Vercaemst C, Schaubroeck D, Verpoort F, Phys. Chem. Chem. Phys., 10(3), 347 (2008)
Marinkovic DM, Avramovic JM, Stankovic MV, Stamenkovic OS, Jovanovic DM, Veljkovic VB, Energy Conv. Manag., 144, 399 (2017)
Fratalocchi L, Visconti CG, Lietti L, Tronconi E, Rossini S, Appl. Catal. A: Gen., 512, 36 (2016)
Todic B, Mandic M, Nikacevic N, Bukur DB, Korean J. Chem. Eng., 35(4), 875 (2018)
Yu WF, Hidajat K, Ray AK, Appl. Catal. A: Gen., 260(2), 191 (2004)
van der Laan GP, Beenackers AACM, Appl. Catal. A: Gen., 193(1-2), 39 (2000)
Inderwildi OR, Jenkins SJ, King DA, J. Phys. Chem. C, 112, 1305 (2008)
Ojeda M, Li A, Nabar R, Nilekar AU, Mavrikakis M, Iglesia E, J. Phys. Chem. C, 114(46), 19761 (2010)
Huo CF, Ren J, Li YW, Wang JG, Jiao HJ, J. Catal., 249(2), 174 (2007)
Azadi P, Brownbridge G, Kemp I, Mosbach S, Dennis JS, Kraft M, ChemCatChem., 7(1), 137 (2015)
Botes FG, van Dyk B, McGregor C, Ind. Eng. Chem. Res., 48(23), 10439 (2009)
Shetty S, Jansen APJ, van Santen RA, J. Am. Chem. Soc., 131(36), 12874 (2009)
Liu JX, Su HY, Sun DP, Zhang BY, Li WX, J. Am. Chem. Soc., 135(44), 16284 (2013)
Rebmann E, Fongarland P, Lecocq V, Diehl F, Schuurman Y, Catal. Today, 275, 20 (2016)
Sari A, Zamani Y, Taheri SA, Fuel Process Technol., 90(10), 1305 (2009)
Zennaro R, Tagliabue M, Bartholomew CH, Catal. Today, 58(4), 309 (2000)
Einbeigi A, Atashi H, Mirzaei AA, Zohdi-Fasaei H, Golestan S, J. Taiwan Inst. Chem. Eng., 103, 57 (2019)
Koo HM, Park MJ, Moon DJ, Bae JW, Korean J. Chem. Eng., 35(6), 1263 (2018)
Eshraghi A, Mirzaei AA, Atashi H, J. Nat. Gas Sci. Eng., 26, 940 (2015)
Todic B, Bhatelia T, Froment GF, Ma WP, Jacobs G, Davis BH, Bukur DB, Ind. Eng. Chem. Res., 52(2), 669 (2013)
Li J, Wu L, Zhang S, Wen J, Liu M, Wang C, Li X, Sustain. Energy Fuels, 3(1), 219 (2019)
Li J, He Y, Tan L, Zhang P, Peng X, Oruganti A, Yang G, Abe H, Wang Y, Tsubaki N, Nat. Catal., 1(10), 787 (2018)
Fratalocchi L, Lietti L, Visconti CG, Fischer N, Claeys M, Catal. Sci. Technol., 9(12), 3177 (2019)
Chu W, Xu JQ, Hong JP, Lin T, Khodakov A, Catal. Today, 256, 41 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로