ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 14, 2020
Accepted May 27, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of molecular weight of regenerated silk fibroin on silk-based spheres for drug delivery

School of Materials Science and Engineering and Institute for Advanced Materials, Jiangsu University, Zhenjiang, 212013, China 1Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
liul@ujs.edu.cn
Korean Journal of Chemical Engineering, October 2020, 37(10), 1732-1742(11), 10.1007/s11814-020-0591-5
downloadDownload PDF

Abstract

Silk fibroin presents a good advantage as a drug carrier for drug delivery, due to the excellent biocompatibility, biodegradability and tunable drug loading and release properties. In this work, we constructed silk spheres by phase separation of the regenerated silk fibroin (RSF) solutions with different MW and polyvinyl alcohol; and it was revealed that MW of RSF can affect the structure, size, surface potential and drug loading and release efficiency of silk spheres. Silk spheres prepared from high MW of RSF were found to load more macromolecular drug with negative charge compared to middle and low MW of RSF. However, for the positive charge and low MW drug, the silk spheres prepared from low MW of RSF could present a high loading efficiency compared to other carriers. Finally, a positive drug with low MW, streptomycin was encapsulated in silk spheres prepared from low MW of RSF, and displayed a long bactericidal and bacteriostatic effect compared to bared streptomycin solution. The results obtained provide guidelines for the modification and options of drug transport vehicles for more efficient drug delivery and utilization through a simple, rapidly constructed, applicable and low-cost drug carrier.

References

rockwood D, Preda R, Yucel T, Wang X, Lovett M, Kaplan D, Nat. Protoc., 6, 1612 (2011)
Farokhi M, Mottaghitalab F, Reis RL, Ramakrishna S, Kundu SC, J. Control. Release, 321, 324 (2020)
Wang X, Yucel T, Lu Q, Hu X, Kaplan DL, Biomaterials, 31, 1025 (2010)
Liu Y, Huang L, Yuan W, Zhang D, Gu Y, Huang J, Murphy S, J. Biomed. Mater. Res. Part A, 108, 1760 (2020)
Ding Z, Fan Z, Huang X, Lu Q, Xu W, Kaplan DL, ACS Appl. Mater. Interfaces, 8, 24463 (2016)
Zhang Q, Yu H, Barbiero M, Wang B, Gu M, Light: Science & Applications, 8, 42 (2019).
Jiang JP, Liu XP, Zhao F, Zhu X, Li XY, Niu XG, Yao ZT, Neural Regen. Res., 15, 1961 (2020)
Han YY, Yu SH, Liu LC, Zhao SJ, Yang TX, Yang YJ, Fang YM, Lv SS, Mol. Catal., 457, 24 (2018)
Srisuwan Y, Srihanam P, Baimark Y, J. Macromol. Sci.-Pure Appl. Chem., 46, 521 (2009)
Liu L, Busuttil K, Zhang S, Yang YL, Wang C, Besenbacher F, Dong MD, PCCP, 13, 17435 (2011)
Liu L, Klausen LH, Dong MD, Nano Today, 23, 40 (2018)
Liu L, Tian X, Ma Y, Duan Y, Zhao X, Pan G, Angew. Chem.-Int. Edit., 57, 7878 (2018)
Liu L, Li Y, Xia D, Bortolini C, Zhang S, Yang Y, Pedersen JS, Wang C, Besenbacher F, Dong M, Nanoscale, 7, 2250 (2015)
Vepari C, Kaplan DL, Prog. Polym. Sci., 32, 991 (2007)
Kwon KJ, Seok H, Appl. Sci., 8, 1214 (2018)
Kapoor S, Kundu SC, Acta Biomater., 31, 17 (2016)
Pham DT, Saelim N, Tiyaboonchai W, Drug Deliv. Transl. Res., 10, 1 (2019)
Wu J, Wang J, Zhang J, Zheng Z, Kaplan DL, Li G, Wang X, ACS Biomater. Sci. Eng., 4, 3885 (2018)
Shi P, Goh JCH, Int. J. Pharm., 420, 282 (2011)
Wu J, Zheng Z, Li G, Kaplan DL, Wang X, Acta Biomater., 39, 156 (2016)
Mitropoulos AN, Perotto G, Kim S, Marelli B, Kaplan DL, Omenetto FG, Adv. Mater., 26(7), 1105 (2014)
Champion JA, Katare YK, Mitragotri S, J. Control. Release, 121, 3 (2007)
Michaela C, Apoorva S, Masoud H, Fedosov DA, Samir M, Anirban SG, Nanoscale, 10, 15350 (2018)
Ta HT, Truong NP, Whittaker AK, Davis TP, Peter K, Expert Opin. Drug Deliv., 15, 33 (2018)
Mehrabadi M, Ku DN, Aidun CK, Phys. Rev. E, 93, 023109 (2016)
Hoet PHM, Bruske-Hohlfeld I, Salata OV, J. Nanobiotechnol., 2, 12 (2004)
Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM, J. Control. Release, 125, 193 (2008)
Tabatabai AP, Partlow BP, Raia NR, Kaplan DL, Blair DL, Langmuir, 34(50), 15383 (2018)
Kim HH, Song DW, Kim MJ, Ryu SJ, Um IC, Ki CS, Park YH, Polymer, 90, 26 (2016)
Wray LS, Hu X, Gallego J, Georgakoudi I, Omenetto FG, Schmidt D, Kaplan DL, J. Biomed. Mater. Res. B Appl. Biomater., 99B, 89 (2011)
Wu JB, Zheng ZZ, Li G, Kaplan DL, Wang XQ, Acta Biomater., 39, 156 (2016)
Wang J, Zhang S, Xing T, Kundu B, Li M, Kundu SC, Lu S, Int. J. Biol. Macromol., 79, 316 (2015)
Wang J, Yin Z, Xiang X, Kundu SC, Mo X, Lu S, Int. J. Mol. Sci., 17, 2012 (2016)
Cheerarot O, Baimark Y, E-Polymers, 15, 67 (2015)
Kim SY, Naskar D, Kundu SC, Bishop DP, Doble PA, Boddy AV, Chan HK, Wall IB, Chrzanowski W, Sci. Rep., 5, 11878 (2015)
Breslauer DN, Muller SJ, Lee LP, Biomacromolecules, 11(3), 643 (2010)
Lammel AS, Hu X, Park SH, Kaplan DL, Scheibel TR, Biomaterials, 31, 4583 (2010)
Wenk E, Wandrey A, Merkle H, Meinel L, J. Control. Release, 132, 26 (2008)
Pham DT, Saelim N, Tiyaboonchai W, Colloids Surf. B: Biointerfaces, 181, 705 (2019)
Pham DT, Tiyaboonchai W, Drug Deliv., 27, 431 (2020)
Alves MH, Jensen BEB, Smith AAA, Zelikin AN, Macromol. Biosci., 11, 1293 (2011)
Baker MI, Walsh SP, Schwartz Z, Boyan BD, J. Biomed. Mater. Res. B Appl. Biomater., 100B, 1451 (2012)
Shi PJ, Goh JCH, Powder Technol., 215-216, 85 (2012)
Baimark Y, Srihanam P, Srisuwan Y, Phinyocheep P, J. Appl. Polym. Sci., 118(2), 1127 (2010)
Chen M, Shao Z, Chen X, J. Biomed. Mater. Res. Part A, 100A, 203 (2012)
Arifin DY, Lee LY, Wang CH, Adv. Drug Deliv. Rev., 58, 1274 (2006)
Li YJ, University S, Supervision FQ, Center T, Agriculture MO, Food Industry, 357, 1565 (2008)
Tanaka T, Suzuki M, Kuranuki N, Tanigami T, Yamaura K, Polym. Int., 42, 107 (1997)
Tanaka T, Tanigami T, Yamaura K, Polym. Int., 45, 175 (1998)
Chen X, Shao Z, Marinkovic NS, Miller LM, Zhou P, Chance MR, Biophys. Chem., 89, 25 (2001)
Sonoyama M, Nakano T, Appl. Spectrosc., 54, 968 (2016)
Hu X, Kaplan D, Cebe P, Macromolecules, 39(18), 6161 (2006)
Kaszuba M, Corbett J, Watson FM, Jones A, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 368, 4439 (2010)
Panyam J, Williams D, Dash A, Leslie-Pelecky D, Labhasetwar V, J. Pharm. Sci., 93, 1804 (2004)
Sawant SB, Joshi JB, Sikdar SK, Biotechnol. Tech., 2, 41 (1988)
Gunduz U, Bioseparation, 9, 277 (2000)
Yoshimizu H, Asakura T, J. Appl. Polym. Sci., 40, 1745 (1990)
Siepmann J, Peppas NA, Adv. Drug Deliv. Rev., 48, 139 (2001)
Siepmann J, Siepmann F, Int. J. Pharm., 364, 328 (2008)
Zhang J, Feng YH, Mi JL, Shen YT, Tu ZG, Liu L, J. Hazard. Mater., 342, 121 (2018)
Chen Q, Zhang L, Feng Y, Shi F, Wang Y, Wang P, Liu L, J. Mat. Chem. B, 6, 7643 (2018)
Feng Y, Liu L, Zhang J, Aslan H, Dong M, J. Mat. Chem. B, 5, 8631 (2017)
Feng Y, Chen Q, Yin Q, Pan G, Tu Z, Liu L, ACS Appl. Bio Mater., 2, 747 (2019)
Mcenery ET, Sweany HC, Turner GC, Ill. Med. J., 4, 15 (1950)
Omar MA, Hammad MA, Nagy DM, Aly AA, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 136, 1760 (2015)
Savidge TA, Biotechnology of industrial antibiotics, Marcel Dekker Inc., New York (1984).
Nori L, ManiKiran SS, Rao N, Int. J. PharmTech Res., 2, 2506 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로