Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 7, 2019
Accepted April 27, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Silicon and porous MWCNT composite as high capacity anode for lithium-ion batteries
Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, 197 Inje-ro, Gimhae, Gyeongnam-do 50834, Korea
ksohn@inje.ac.kr, ksohnlab@gmail.com
Korean Journal of Chemical Engineering, October 2020, 37(10), 1795-1802(8), 10.1007/s11814-020-0559-5
Download PDF
Abstract
A silicon/porous multi-walled carbon nanotubes composite was synthesized using a simple method. A mixture comprising silicon nanoparticles and multi-walled carbon nanotubes was prepared by a mini ball milling method followed by annealing at low temperature. The low-temperature annealing treatment allows the aggregation of silicon nanoparticles and propels them to adhere to the outer walls of carbon nanotubes without the formation of a SiOx layer on Si nanoparticles. Mild oxidation occurring on the carbon tube walls provides additional surface defects. The obtained composite, which was studied as an anode for Li-ion batteries, exhibited excellent cyclability and superior rate capability compared with pristine silicon nanoparticles. The improved electrochemical performance of the composite can be attributed to the electrically conductive carbon tubes, easy access of the electrolyte ions into the porous nanotube walls, and mechanical support provided by the carbon matrix. As a result, the proposed composite can sustain high discharge capacities of 1,685mAh g-1 at 1C rate after 80 cycles and 913mAh g-1 at 5C rate after 100 cycles.
References
Scrosati B, Nature, 373(6515), 557 (1995)
Tarascon JM, Armand M, Nature, 414, 359 (2001)
Obrovac MN, Christensen L, Electrochem. Solid-State Lett., 7, A93 (2004)
Armand M, Tarascon JM, Nature, 451, 7179 (2008)
Nitta N, Wu F, Lee JT, Yushin G, Mater Today, 18, 252 (2015)
Wu YP, Rahm E, Holze R, J. Power Sources, 114, 2 (2003)
Liu DH, Lu HY, Wu XL, Wang J, Yan X, Zhang JP, Geng H, Zhang Y, Yan Q, Nanoscale Horiz., 1, 6 (2016)
Li H, Huang X, Chen L, Wu Z, Liang Y, Electrochem. Solid State Lett., 2, 11 (1999)
Ma H, Cheng F, Chen J, Zhao J, Li C, Tao Z, Liang J, Adv. Mater., 19, 22 (2007)
Szczech JR, Jin S, Energy Environ. Sci., 4, 1 (2011)
Song T, Xia J, Lee JH, Lee DH, Kwon MS, Choi JM, Wu J, et al., Nano Lett., 10, 5 (2010)
Xiao J, Xu W, Wang D, Choi D, Wang W, Li X, Graff GL, Liu J, Zhanget JG, J. Electrochem. Soc., 157, 10 (2010)
Wang JW, He Y, Fan F, Liu XH, Xia S, Liu Y, Harris CT, Li H, Huang JY, Mao SX, Zhu T, Nano Lett., 13, 2 (2013)
Yu Y, Gu L, Zhu C, Tsukimoto S, VanAken PA, Maier J, Adv. Mater., 22, 20 (2010)
Zhang Y, Zhu Y, Fu L, Meng J, Yu N, Wang J, Wu Y, Chin. J. Chem., 35, 1 (2017)
Wen ZS, Yang J, Wang BF, Wang K, Liu Y, Electrochem. Commun., 5, 2 (2003)
Fagiolari L, Bella F, Energy Environ. Sci., 12, 3437 (2019)
Perreault LL, Colo F, Meligrana G, Kim K, Fiorilli S, Bella F, Nair JR, Brovarone CV, Florek J, Kleitz F, Gerbaldi C, Adv. Eng. Mater., 8, 180243 (2018)
Sun H, Zhu J, Baumann D, Peng L, Xu Y, Shakir I, Huang Y, Duan X, Nat. Rev. Mat., 4, 45 (2019)
Jeong JH, Jung DW, Kong BS, Shin CM, Oh ES, Korean J. Chem. Eng., 28(11), 2202 (2011)
Venugopal N, Kim WS, Yu T, Korean J. Chem. Eng., 33(4), 1500 (2016)
Vovk OM, Na BK, Cho BW, Lee JK, Korean J. Chem. Eng., 26(4), 1034 (2009)
Venugopal N, Kim WS, Korean J. Chem. Eng., 32(9), 1918 (2015)
Pedico A, Lamberti A, Gigot A, Fontana M, Bella F, Rivolo P, Cocuzza M, Pirri CF, ACS Appl. Energy Mater., 1, 4440 (2018)
Liu J, Li D, Wang Y, Zhang S, Kang Z, Xie H, Sun L, J. Energy Chem., 47, 66 (2020)
Luo Q, Ma H, Hou Q, Li Y, Ren J, Dai X, Yao Z, Zhou Y, et al., Adv. Funct. Mater., 28, 170677 (2018)
Shih HJ, Chang JY, Cho CS, Li CC, Carbon, 159, 401 (2020)
Bella F, Pugliese D, Zolin L, Gerbaldi C, Electrochim. Acta, 237, 87 (2017)
Zolin L, Nair JR, Beneventi D, Bella F, Destro M, Jagdale P, Cannavaro I, Tagliaferro A, Chaussy D, Geobaldo F, Gerbaldi C, Carbon, 107, 811 (2016)
Zhang Y, Zhu Y, Fu L, Meng J, Yu N, Wang J, Wu Y, Chin. J. Chem., 35, 1 (2017)
Wen ZS, Yang J, Wnag BF, Wang K, Liu Y, Electrochem. Commun., 5, 2 (2003)
Si Q, Kawakubo M, Matsui M, Horiba T, Yamamoto O, Takeda Y, Seki N, Imanishi N, J. Power Sources, 248, 1275 (2014)
Chiang YM, Science, 330, 6010 (2010)
Saeed K, Khan I, Carbon Lett., 14, 3 (2013)
Iijima S, Nature, 354, 56 (1991)
Wang K, Luo S, Wu Y, He X, Zhao F, Wang J, Jiang K, Fan S, Adv. Funct. Mater., 23, 7 (2013)
Gohier A, Laik B, Kim KH, Maurice JL, Ramos JPP, Cojocaru CS, Van PT, Adv. Mater., 24, 19 (2012)
Wang W, Epur R, Kumta PN, Electrochem. Commun., 13, 5 (2011)
Park KS, Min KM, Seo SD, Lee GH, Shim HW, Kim DW, Mater. Res. Bull., 48, 4 (2013)
Hatipoglu G, Alaf M, Akbulut H, J. Mater. Sci.: Mater. Electron., 3, 2067 (2019)
Wang W, Kumta PN, ACS Nano., 4, 4 (2010)
Ji L, Zhang X, Carbon, 47, 14 (2009)
Arora AK, Rajalakshmi M, Ravindran TR, Sivasubramanian V, J. Raman Spectrosc., 38, 6 (2007)
Cebik J, McDonough JK, Peerally F, Medrano R, Neitzel I, Gogotsi Y, Osswald S, Nanotechnology, 24, 20 (2013)
Arani HE, Mirhabibi AR, Collins S, Daroughegi R, et al., RSC Adv., 7, 9 (2017)
Shen X, Mu D, Chen S, Xu B, Wu B, Wu F, J. Alloy. Compd., 552, 60 (2013)
Epur R, Ramanathan M, Datta MK, Hong DH, Jampani PH, Gattu B, Kumt PN, Nanoscale, 7, 8 (2015)
Arunakumari N, Venugopal N, Sohn KY, Sci. Adv. Mater., 12, 337 (2020)
Cui LF, Yang Y, Hsu CM, Cui Y, Nano Lett., 9, 9 (2009)
Yang X, Wen Z, Xu X, Lin B, Lin Z, J. Electrochem. Soc., 153, 7 (2006)
Cui LF, Hu L, Choi JW, Cui Y, ACS Nano., 4, 7 (2007)
Gao P, Nuli Y, He YS, Wang J, Minett AI, Yang J, Chen J, Chem. Commun., 46, 48 (2010)
Eom JY, Kwon HS, ACS Appl. Mater. Interfaces, 3, 4 (2011)
Tarascon JM, Armand M, Nature, 414, 359 (2001)
Obrovac MN, Christensen L, Electrochem. Solid-State Lett., 7, A93 (2004)
Armand M, Tarascon JM, Nature, 451, 7179 (2008)
Nitta N, Wu F, Lee JT, Yushin G, Mater Today, 18, 252 (2015)
Wu YP, Rahm E, Holze R, J. Power Sources, 114, 2 (2003)
Liu DH, Lu HY, Wu XL, Wang J, Yan X, Zhang JP, Geng H, Zhang Y, Yan Q, Nanoscale Horiz., 1, 6 (2016)
Li H, Huang X, Chen L, Wu Z, Liang Y, Electrochem. Solid State Lett., 2, 11 (1999)
Ma H, Cheng F, Chen J, Zhao J, Li C, Tao Z, Liang J, Adv. Mater., 19, 22 (2007)
Szczech JR, Jin S, Energy Environ. Sci., 4, 1 (2011)
Song T, Xia J, Lee JH, Lee DH, Kwon MS, Choi JM, Wu J, et al., Nano Lett., 10, 5 (2010)
Xiao J, Xu W, Wang D, Choi D, Wang W, Li X, Graff GL, Liu J, Zhanget JG, J. Electrochem. Soc., 157, 10 (2010)
Wang JW, He Y, Fan F, Liu XH, Xia S, Liu Y, Harris CT, Li H, Huang JY, Mao SX, Zhu T, Nano Lett., 13, 2 (2013)
Yu Y, Gu L, Zhu C, Tsukimoto S, VanAken PA, Maier J, Adv. Mater., 22, 20 (2010)
Zhang Y, Zhu Y, Fu L, Meng J, Yu N, Wang J, Wu Y, Chin. J. Chem., 35, 1 (2017)
Wen ZS, Yang J, Wang BF, Wang K, Liu Y, Electrochem. Commun., 5, 2 (2003)
Fagiolari L, Bella F, Energy Environ. Sci., 12, 3437 (2019)
Perreault LL, Colo F, Meligrana G, Kim K, Fiorilli S, Bella F, Nair JR, Brovarone CV, Florek J, Kleitz F, Gerbaldi C, Adv. Eng. Mater., 8, 180243 (2018)
Sun H, Zhu J, Baumann D, Peng L, Xu Y, Shakir I, Huang Y, Duan X, Nat. Rev. Mat., 4, 45 (2019)
Jeong JH, Jung DW, Kong BS, Shin CM, Oh ES, Korean J. Chem. Eng., 28(11), 2202 (2011)
Venugopal N, Kim WS, Yu T, Korean J. Chem. Eng., 33(4), 1500 (2016)
Vovk OM, Na BK, Cho BW, Lee JK, Korean J. Chem. Eng., 26(4), 1034 (2009)
Venugopal N, Kim WS, Korean J. Chem. Eng., 32(9), 1918 (2015)
Pedico A, Lamberti A, Gigot A, Fontana M, Bella F, Rivolo P, Cocuzza M, Pirri CF, ACS Appl. Energy Mater., 1, 4440 (2018)
Liu J, Li D, Wang Y, Zhang S, Kang Z, Xie H, Sun L, J. Energy Chem., 47, 66 (2020)
Luo Q, Ma H, Hou Q, Li Y, Ren J, Dai X, Yao Z, Zhou Y, et al., Adv. Funct. Mater., 28, 170677 (2018)
Shih HJ, Chang JY, Cho CS, Li CC, Carbon, 159, 401 (2020)
Bella F, Pugliese D, Zolin L, Gerbaldi C, Electrochim. Acta, 237, 87 (2017)
Zolin L, Nair JR, Beneventi D, Bella F, Destro M, Jagdale P, Cannavaro I, Tagliaferro A, Chaussy D, Geobaldo F, Gerbaldi C, Carbon, 107, 811 (2016)
Zhang Y, Zhu Y, Fu L, Meng J, Yu N, Wang J, Wu Y, Chin. J. Chem., 35, 1 (2017)
Wen ZS, Yang J, Wnag BF, Wang K, Liu Y, Electrochem. Commun., 5, 2 (2003)
Si Q, Kawakubo M, Matsui M, Horiba T, Yamamoto O, Takeda Y, Seki N, Imanishi N, J. Power Sources, 248, 1275 (2014)
Chiang YM, Science, 330, 6010 (2010)
Saeed K, Khan I, Carbon Lett., 14, 3 (2013)
Iijima S, Nature, 354, 56 (1991)
Wang K, Luo S, Wu Y, He X, Zhao F, Wang J, Jiang K, Fan S, Adv. Funct. Mater., 23, 7 (2013)
Gohier A, Laik B, Kim KH, Maurice JL, Ramos JPP, Cojocaru CS, Van PT, Adv. Mater., 24, 19 (2012)
Wang W, Epur R, Kumta PN, Electrochem. Commun., 13, 5 (2011)
Park KS, Min KM, Seo SD, Lee GH, Shim HW, Kim DW, Mater. Res. Bull., 48, 4 (2013)
Hatipoglu G, Alaf M, Akbulut H, J. Mater. Sci.: Mater. Electron., 3, 2067 (2019)
Wang W, Kumta PN, ACS Nano., 4, 4 (2010)
Ji L, Zhang X, Carbon, 47, 14 (2009)
Arora AK, Rajalakshmi M, Ravindran TR, Sivasubramanian V, J. Raman Spectrosc., 38, 6 (2007)
Cebik J, McDonough JK, Peerally F, Medrano R, Neitzel I, Gogotsi Y, Osswald S, Nanotechnology, 24, 20 (2013)
Arani HE, Mirhabibi AR, Collins S, Daroughegi R, et al., RSC Adv., 7, 9 (2017)
Shen X, Mu D, Chen S, Xu B, Wu B, Wu F, J. Alloy. Compd., 552, 60 (2013)
Epur R, Ramanathan M, Datta MK, Hong DH, Jampani PH, Gattu B, Kumt PN, Nanoscale, 7, 8 (2015)
Arunakumari N, Venugopal N, Sohn KY, Sci. Adv. Mater., 12, 337 (2020)
Cui LF, Yang Y, Hsu CM, Cui Y, Nano Lett., 9, 9 (2009)
Yang X, Wen Z, Xu X, Lin B, Lin Z, J. Electrochem. Soc., 153, 7 (2006)
Cui LF, Hu L, Choi JW, Cui Y, ACS Nano., 4, 7 (2007)
Gao P, Nuli Y, He YS, Wang J, Minett AI, Yang J, Chen J, Chem. Commun., 46, 48 (2010)
Eom JY, Kwon HS, ACS Appl. Mater. Interfaces, 3, 4 (2011)