Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 24, 2020
Accepted May 15, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Microchip sensor of PdO-NiO electrode for H2O2 sensing fabricated with the UV photolithography
School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea
chchung@skku.edu
Korean Journal of Chemical Engineering, October 2020, 37(10), 1810-1820(11), 10.1007/s11814-020-0581-7
Download PDF
Abstract
An electrochemical microchip sensor was fabricated through the photolithographic process. The metal paste used in the micro-pattern of the sensor chip contained dendritic and spherical Ag-coated Cu powders, which decreased the electrical resistance of the pattern down to 25.69Ω·cm by forming a network for electron transfer between particles. The electrode materials were dendritic palladium oxide-nickel oxide powders that showed dramatically high surface area. Also, a synergetic effect on the sensing performance between palladium oxide and nickel oxide was observed. The formation of micro-pattern was investigated through optical microscope and field-emission scanning electron microscope. The body resistance of the conductive paste was calculated using the 4-point probe technique, and the electrochemical characteristics of the sensor were analyzed by cyclic voltammetry and chronoamperometry. The fabricated sensor chip exhibited sensing performance for hydrogen peroxide detection with high sensitivity of 641.75 μA mM-1 cm-2 in a dynamic range between 50 μM and 13mM. Its long-term stability and high selectivity were also confirmed.
Keywords
References
Chen S, Yuan R, Chai Y, Hu F, Microchim. Acta, 180, 15 (2012)
Cinti S, Arduini F, Moscone D, Palleschi G, Killard AJ, Sensors, 14, 14222 (2014)
Mujeeb-U-Rahman M, Adalian D, Scherer A, J. Nanotechnology, 2015, 1 (2015)
Moya A, Gabriel G, Villa R, del Campo FJ, Curr. Opin. Electrochem., 3, 29 (2017)
Hughes G, Westmacott K, Honeychurch KC, Crew A, Pemberton RW, Hart JP, Biosensors, 6, 29 (2016)
Couto RAS, Lima JLFC, Quinaz MB, Talanta, 146, 801 (2016)
Katseli V, Economou A, Kokkinos C, Electrochem. Commun., 103, 100 (2019)
Kim S, Park JH, Kang K, Park CO, Park I, J. Micromech. Microeng., 25, 015002 (2015)
Kim CK, Lee GJ, Lee MK, Rhee CK, Powder Technol., 263, 1 (2014)
Hai HT, Ahn JG, Kim DJ, Lee JR, Chung HS, Kim CO, Surf. Coat. Technol., 201, 3788 (2006)
Nishikawa H, Mikami S, Miyake K, Aoki A, Takemoto T, Mater. Trans., 51(10), 1785 (2010)
Djokic SS, Djokic NS, J. Electrochem. Soc., 158(4), D204 (2011)
Liu J, Zeng X, J. Mater. Res., 27, 1853 (2012)
Zhuo K, An CY, Kannan PK, Seo N, Park YS, Chung CH, Korean J. Chem. Eng., 34(5), 1483 (2017)
Zhao J, Zhang D, Zhao J, J. Solid State Chem., 184, 2339 (2011)
Park YS, An CY, Kannan PK, Seo N, Zhuo K, Yoo TK, Chung CH, Appl. Surf. Sci., 389, 865 (2016)
Zhang Y, Wilson GS, J. Electroanal. Chem., 345, 253 (1993)
Zhang S, Han L, Hou C, Li C, Lang Q, Han L, Liu A, J. Electroanal. Chem., 742, 84 (2015)
Zhang T, Yuan R, Chai Y, Li W, Ling S, Sensors, 8, 5141 (2008)
Saha P, Maharajan A, Dikshit PK, Kim BS, Korean J. Chem. Eng., 36(12), 2143 (2019)
Ojani R, Raoof JB, Norouzi B, Int. J. Electrochem. Sci., 7, 1852 (2012)
Zhu L, Zheng Y, Jian J, Ionics, 21, 2919 (2015)
Lee J, Sharma D, Lim Y, Shin H, Sens. Actuators B-Chem., 267, 467 (2018)
Kim J, Oh SY, Park JY, Kim Y, Korean J. Chem. Eng., 33(1), 344 (2016)
Ah CY, Zhuo K, Kim WJ, Chung CH, Sens. Actuators B-Chem., 213, 329 (2015)
Smits FM, Bell Syst. Tech. J., 37(3), 711 (1958)
Zhang YQ, Yang WX, Wang YZ, Jia JB, Wang JG, Microchim. Acta, 180, 1085 (2013)
Vijayakumar S, Nagamuthu S, Muralidharan G, ACS Appl. Mater. Interfaces, 5, 2188 (2013)
Ren B, Fan MQ, Liu Q, Wang J, Song DL, Bai XF, Electrochim. Acta, 92, 197 (2013)
Chen CS, Pan FM, J. Power Sources, 208, 9 (2012)
Barroso-Quiroga MM, Castro-Luna AE, Int. J. Hydrog. Energy, 35(11), 6052 (2010)
Kurowska E, Brzozka A, Jarosz M, Sulka GD, Jaskuła M, Nanotechnology, 23, 7 (2012)
Zhu X, Niu X, Zhao H, Lan M, Sens. Actuators B-Chem., 195, 274 (2014)
Zheng J, Diao J, Jin Y, Ding A, Wang B, Wu L, Weng B, Chen J, J. Electrochem. Soc., 165, 5 (2018)
Stromberg LR, Hondred JA, Sanborn D, Mendivelso-Perez D, et al., Microchim. Acta, 186, 533 (2019)
Shi L, Layani M, Cai X, Zhao H, Magdassi S, Lan M, Sens. Actuators B-Chem., 256, 938 (2018)
Cinti S, Arduini F, Moscone D, Palleschi G, Killard AJ, Sensors, 14, 14222 (2014)
Mujeeb-U-Rahman M, Adalian D, Scherer A, J. Nanotechnology, 2015, 1 (2015)
Moya A, Gabriel G, Villa R, del Campo FJ, Curr. Opin. Electrochem., 3, 29 (2017)
Hughes G, Westmacott K, Honeychurch KC, Crew A, Pemberton RW, Hart JP, Biosensors, 6, 29 (2016)
Couto RAS, Lima JLFC, Quinaz MB, Talanta, 146, 801 (2016)
Katseli V, Economou A, Kokkinos C, Electrochem. Commun., 103, 100 (2019)
Kim S, Park JH, Kang K, Park CO, Park I, J. Micromech. Microeng., 25, 015002 (2015)
Kim CK, Lee GJ, Lee MK, Rhee CK, Powder Technol., 263, 1 (2014)
Hai HT, Ahn JG, Kim DJ, Lee JR, Chung HS, Kim CO, Surf. Coat. Technol., 201, 3788 (2006)
Nishikawa H, Mikami S, Miyake K, Aoki A, Takemoto T, Mater. Trans., 51(10), 1785 (2010)
Djokic SS, Djokic NS, J. Electrochem. Soc., 158(4), D204 (2011)
Liu J, Zeng X, J. Mater. Res., 27, 1853 (2012)
Zhuo K, An CY, Kannan PK, Seo N, Park YS, Chung CH, Korean J. Chem. Eng., 34(5), 1483 (2017)
Zhao J, Zhang D, Zhao J, J. Solid State Chem., 184, 2339 (2011)
Park YS, An CY, Kannan PK, Seo N, Zhuo K, Yoo TK, Chung CH, Appl. Surf. Sci., 389, 865 (2016)
Zhang Y, Wilson GS, J. Electroanal. Chem., 345, 253 (1993)
Zhang S, Han L, Hou C, Li C, Lang Q, Han L, Liu A, J. Electroanal. Chem., 742, 84 (2015)
Zhang T, Yuan R, Chai Y, Li W, Ling S, Sensors, 8, 5141 (2008)
Saha P, Maharajan A, Dikshit PK, Kim BS, Korean J. Chem. Eng., 36(12), 2143 (2019)
Ojani R, Raoof JB, Norouzi B, Int. J. Electrochem. Sci., 7, 1852 (2012)
Zhu L, Zheng Y, Jian J, Ionics, 21, 2919 (2015)
Lee J, Sharma D, Lim Y, Shin H, Sens. Actuators B-Chem., 267, 467 (2018)
Kim J, Oh SY, Park JY, Kim Y, Korean J. Chem. Eng., 33(1), 344 (2016)
Ah CY, Zhuo K, Kim WJ, Chung CH, Sens. Actuators B-Chem., 213, 329 (2015)
Smits FM, Bell Syst. Tech. J., 37(3), 711 (1958)
Zhang YQ, Yang WX, Wang YZ, Jia JB, Wang JG, Microchim. Acta, 180, 1085 (2013)
Vijayakumar S, Nagamuthu S, Muralidharan G, ACS Appl. Mater. Interfaces, 5, 2188 (2013)
Ren B, Fan MQ, Liu Q, Wang J, Song DL, Bai XF, Electrochim. Acta, 92, 197 (2013)
Chen CS, Pan FM, J. Power Sources, 208, 9 (2012)
Barroso-Quiroga MM, Castro-Luna AE, Int. J. Hydrog. Energy, 35(11), 6052 (2010)
Kurowska E, Brzozka A, Jarosz M, Sulka GD, Jaskuła M, Nanotechnology, 23, 7 (2012)
Zhu X, Niu X, Zhao H, Lan M, Sens. Actuators B-Chem., 195, 274 (2014)
Zheng J, Diao J, Jin Y, Ding A, Wang B, Wu L, Weng B, Chen J, J. Electrochem. Soc., 165, 5 (2018)
Stromberg LR, Hondred JA, Sanborn D, Mendivelso-Perez D, et al., Microchim. Acta, 186, 533 (2019)
Shi L, Layani M, Cai X, Zhao H, Magdassi S, Lan M, Sens. Actuators B-Chem., 256, 938 (2018)