ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 2, 2020
Accepted June 8, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Numerical study of oxy-fuel combustion behaviors in a 2MWe CFB boiler

Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 567, Bakje-daero, Jeonju-si, Jeollabuk-do 54896, Korea 1Environment System Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Korea
kr
Korean Journal of Chemical Engineering, November 2020, 37(11), 1878-1887(10), 10.1007/s11814-020-0611-5
downloadDownload PDF

Abstract

Using modified IEA-CFBC(International Energy Association-Circulating fluidized bed combustion) model, a 2MWe oxy-fuel CFBC boiler is simulated and analyzed as a promising solution to reduce greenhouse gas emission from coal power plants. This study evaluated and compared the oxy-combustion characteristics of various coals. Also, the effects of CO2 concentration (71-79 vol%), bed temperature (850 °C) and coal properties on combustion efficiencies, CO2 concentration, acid gas emissions were analyzed. Because of their higher N2 and S content, sub-bituminous and bituminous coals were found to have SOx and NOx concentrations higher than those of anthracite. These simulation results from Oxy-fuel CFBC simulation of various coals can be used as operating parameters for design and development of commercial Oxy-fuel CFBC boilers.

References

Lee SH, Lee TH, Jeong SM, Lee JM, Renew. Energy, 138, 121 (2019)
BP energy outlook: 2018 edition, www.bp.com/energyoutlook. (Accessed February 10, 2020).
Gwak YR, Kim YB, Gwak IS, Lee SH, Fuel, 213, 115 (2018)
Moon JH, Jo SH, Mun TY, Park SJ, Kim JY, Khoi NH, Lee JG, Korean Chem. Eng. Res., 57(3), 400 (2019)
Gwak IS, Gwak YR, Kim YB, Lee SH, J. Ind. Eng. Chem., 58, 154 (2018)
Gwak YR, Kim YB, Keel SI, Yun JH, Lee SH, Korean Chem. Eng. Res., 56(5), 631 (2018)
Lee JM, Kim DW, Kim JS, Na JG, Lee SH, 35, 2814 (2010).
Stec M, Czaplicki A, Tomaszewicz G, Słowik K, Korean J. Chem. Eng., 35(1), 129 (2018)
Lee DY, Ryu HJ, Shun DW, Bae DH, Baek JI, Korean J. Chem. Eng., 35(6), 1257 (2018)
Moon JH, Jo SH, Park SJ, Khoi NH, Seo MW, Ra HW, Yoon SJ, Yoon SM, Lee JG, Mun TY, Energy, 166, 183 (2019)
Lupion M, Alvarez I, Otero P, Kuivalainen R, Lantto J, Hotta A, Hack H, Energy Procedia, 37, 6179 (2013)
Mathekga H. I., Oboirien B. O., North B. C., Int. J. Energy Res., 40(7), 878 (2016)
Jia L, Tan Y, McCalden D, Wu Y, He I, Symonds R, Anthony EJ, Int. J. Green Gas Control, 7, 240 (2012)
Duan LB, Sun HC, Zhao CS, Zhou W, Chen XP, Fuel, 127, 47 (2014)
Li SY, Li W, Xu MX, Wang X, Li HY, Lu QG, Fuel, 146, 81 (2015)
Tan Y, Jia L, Wu Y, Anthony EJ, Appl. Energy, 92, 343 (2012)
Diez LI, Lupianez C, Guedea I, Bolea I, Romeo LM, Fuel Process. Technol., 139, 196 (2015)
Yang C, Kim Y, Bang B, Jeong S, Moon J, Mun TY, Jo s, Lee J, Lee U, Fuel, 267, 117206 (2020)
Hannes JP, Mathematical modeling of circulating fluidized bed combustion, PhD Thesis, Delft University of Technology, The Netherlands (1996).
Lee JM, Kim JS, Kim JJ, Energy, 28(6), 575 (2003)
Seddighi S, Pallares D, Johnsson F, One-dimensional modeling of oxy fuel fluidized bed combustion for CO2 capture, ECI Digital Archives (2010).
Jayarathna CK, Moldestad BE, Tokheim LA, Linkoping Electronic conference proceedings, Iceland, 76-82 (2017).
Kallio S, et al.,Proceedings of Finnish-Swedish Flame Days (2009). http://www.ffrc.fi/FlameDays_2009/3A/KallioPaper.pdf.
Wu Y, Liu D, Zheng D, Ma J, Duan L, Chen X, Fuel Process. Technol., 195, 106129 (2019)
Amoo LM, Fuel, 140, 178 (2015)
Wu Y, Liu DY, Duan LB, Ma JL, Xiong J, Chen XP, Fuel, 216, 596 (2018)
Crane Company, Flow of fluids through valves, fittings, and pipe, Technical Paper, Connecticut (1988).
Weast RC, CRC handbook of chemistry and physics, Chemical Rub-ber Company, Florida (1954).
Lemmon EW, Jacobsen RT, Int. J. Thermophys., 25, 21 (2004)
Faghri A, Zhang Y, Transport phenomena in multiphase systems, Elsevier, Amsterdam (2006).
Incropera FP, DeWitt DP, Bergman TL, Lavine AS, Fundamentals of heat and mass transfer, 6th Ed., John Wiley & Sons, New York (2007).
Future Energy Plant, https://www.kier.re.kr/fep. (Accessed March 20, 2020).
Stanger R, Wall T, Sporl R, Paneru M, Grathwohl S, et al., Int. J. Greenh. Gas Control, 40, 55 (2015)
Gungor A, Fuel, 87(7), 1083 (2008)
Gyulmaliev AM, Shpirt MY, Solid Fuel Chem., 42, 263 (2008)
Komorowsk M, Nowak W, The 14th international conference on fluidization-from fundamentals to products, ECI Symposium Series, (2013). http://dc.engconfintl.org/fluidization_xiv/32.
Bu CS, Gomez-Barea A, Chen XP, Leckner B, Liu DY, Pallares D, Lu P, Appl. Energy, 177, 247 (2016)
Sporl R, Paneru M, Babat S, Stein-Brzozowska G, Maier J, Scheffknecht G, Fuel Process. Technol., 141, 258 (2016)
El Sheikh K, Khan MJH, Hamid MD, Shrestha S, Ali BS, Ryabov GA, Dolgushin LA, Hussain MA, Bukharkina TV, Gorelova EA, Chin. J. Chem. Eng., 27(2), 426 (2019)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로