ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 20, 2020
Accepted June 12, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A thermo-kinetic study on co-pyrolysis of oil shale and polyethylene terephthalate using TGA/FT-IR

Faculty of Engineering, Department of Chemical Engineering, Bilecik Seyh Edebali University, 11210, Bilecik, Turkey 1Faculty of Engineering, Department of Chemical Engineering, Eskisehir Technical University, 26555, Eskişehir, Turkey 2Faculty of Engineering, Department of Chemical Engineering, Anadolu University, 26555, Eskisehir, Turkey 3Faculty of Engineering, Department of Materials Science and Engineering Engineering, Anadolu University, 26555, Eskisehir, Turkey
gozsin@anadolu.edu.tr, gamzenur.ozsin@bilecik.edu.tr
Korean Journal of Chemical Engineering, November 2020, 37(11), 1888-1898(11), 10.1007/s11814-020-0614-2
downloadDownload PDF

Abstract

This study explored the effects of polyethylene terephthalate (PET) blending during the pyrolysis of oil shale (OS). Dynamic pyrolysis and co-pyrolysis tests at heating rates in the range from 5 to 40 °C/min were carried out using a thermogravimetric analyzer (TGA) coupled to a Fourier transform infrared spectrometer (FT-IR) to determine the kinetic parameters of the process and for online detection of evolved gasses. Pyrolytic decomposition of OS included a multi-stage decomposition process, while PET decomposed only in a single step. The kinetics of pyrolysis and co-pyrolysis was determined via model-free iso-conversional methods, namely Friedman, FWO, Starink, Vyazovkin, in a conversion degree range of 0.1-0.9. The kinetic models were validated with the obtained data to describe pyrolytic and copyrolytic degradation mechanisms, and the regression coefficients were between 0.9823 and 0.9999. The results showed that the activation energy of co-pyrolysis was evidently lower than that of PET or OS pyrolysis. This led to the conclusion that co-pyrolysis could be a potential method for obtaining shale oil due to the synergy between OS and PET.

References

Ong HC, Chen WH, Farooq A, Gan YY, Lee KT, Ashokkumar V, Renew. Sust. Energ. Rev., 113, 109266 (2019)
Tahmasebi A, Maliutina K, Yu J, Korean J. Chem. Eng., 36(3), 393 (2019)
Bae YJ, Ryu C, Jeon JK, Park J, Suh DJ, Suh YW, Chang D, Park YK, Bioresour. Technol., 102(3), 3512 (2011)
Kim YM, Lee HW, Jang SH, Jeong JH, Ryu SM, Jung SC, Park YK, Korean J. Chem. Eng., 37(3), 493 (2020)
Siramard S, Lin LX, Zhang C, Lai DG, Cheng S, Xu GW, Fuel Process. Technol., 148, 248 (2016)
Jiang HF, Deng SH, Chen J, Zhang MY, Li S, Shao YF, Yang JQ, Li JF, Energy Conv. Manag., 143, 505 (2017)
Culin C, Tente K, Konist M, Maaten B, Loo L, Suuberg E, Kulaots I, Oil Shale, 36(3), 353 (2019)
Chang Z, Chu M, Zhang C, Bai S, Lin H, Ma L, J. Anal. Appl. Pyrolysis, 130, 269 (2018)
Kilic M, Putun AE, Uzun BB, Putun E, Energy Conv. Manag., 78, 461 (2014)
Bozkurt PA, Tosun O, Canel M, J. Energy Inst., 90, 355 (2017)
Tu J, Sheng JJ, J. Taiwan Inst. Chem. E., 106, 169 (2020)
Chang Z, Chu M, Zhang C, Bai S, Lin H, Ma L, Korean J. Chem. Eng., 34(12), 3111 (2017)
Al-Makhadmeh L, Maier J, Al-Harahsheh M, Scheffknecht G, Fuel, 103, 421 (2013)
Al-Harahsheh A, Al-Harahsheh M, Al-Otoom A, Allawzi M, Fuel Process. Technol., 90(6), 818 (2009)
Amer MW, Alhesan JSA, Marshall M, Awwad AM, Al-Ayed OS, J. Anal. Appl. Pyrolysis, 140, 219 (2019)
Shah J, Jan MR, J. Taiwan Inst. Chem. E., 51, 96 (2015)
Ryu HW, Tsang YF, Lee HW, Jae J, Jung SC, Lam SS, Park ED, Park YK, Chem. Eng. J., 373, 375 (2019)
Zhou LM, Luo TA, Huang QW, Energy Conv. Manag., 50(3), 705 (2009)
Wang X, Ma D, Jin Q, Deng S, Stancin H, Tan H, Mikulcic H, Fuel Process. Technol., 194, 106127 (2019)
Park S, Jae J, Farooq A, Kwon EE, Park ED, Ha JM, Jung SC, Park YK, Appl. Energy, 255, 113801 (2019)
Aboulkas A, El Harfi K, Nadifiyine M, El Bouadili A, Fuel Process. Technol., 89(11), 1000 (2008)
Ballice L, Yuksel M, Saglam M, Reimert R, Schulz H, Fuel, 77(13), 1431 (1998)
Zhang J, Zhong Z, Zhang B, Xue Z, Guo F, Wang J, Clean Technol. Environ. Policy, 18, 1621 (2016)
Till Z, Varga T, Soja J, Miskolczi N, Chovan T, Energy Conv. Manag., 173, 320 (2018)
Zhang ZZ, Zhu MM, Zhang DK, Appl. Energy, 220, 87 (2018)
Williams EA, Williams PT, J. Chem. Technol. Biotechnol., 70(1), 9 (1997)
Ozsin G, Putun AE, J. Clean Prod., 205, 1127 (2018)
Yoshioka T, Grause G, Eger C, Kaminsky W, Okuwaki A, Polym. Degrad. Stabil., 86, 499 (2004)
Cepeliogullar O, Putun AE, J. Anal. Appl. Pyrolysis, 110, 363 (2014)
Park JM, Keel S, Yun JH, Yun JH, Lee SS, Korean J. Chem. Eng., 34(8), 2204 (2017)
Yang F, Yu Q, Xie H, Zuo Z, Hou L, Qin Q, Korean J. Chem. Eng., 35(8), 1626 (2018)
Ozsin G, Putum AE, Korean J. Chem. Eng., 35(2), 428 (2018)
Parthasarathy P, Choi HS, Hwang JG, Park HC, Korean J. Chem. Eng., 34(6), 1678 (2017)
Boytsova A, Kondrasheva N, Ancheyta J, Energy Fuels, 32(2), 1132 (2018)
Yao C, Tian H, Hu Z, Yin Y, Chen D, Yan X, Korean J. Chem. Eng., 35(2), 511 (2018)
Lin Y, Liao YF, Yu ZS, Fang SW, Lin YS, Fan YL, Peng XW, Ma XQ, Energy Conv. Manag., 118, 345 (2016)
Huang JL, Liu JY, Chen JC, Xie WM, Kuo JH, Lu XW, Chang KL, Wen ST, Sun G, Cai HM, Buyukada M, Evrendilek F, Bioresour. Technol., 266, 389 (2018)
Friedman HL, J. Polym. Sci. Pol. Sym. C, 6, 183 (1964)
Flynn JH, Wall LA, J. Res. Nat. Bur. Stand, 70, 487 (1966)
Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965)
Starink MJ, Thermochim. Acta, 288(1-2), 97 (1996)
Vyazovkin S, J. Therm. Anal., 49, 1493 (1997)
Niu SL, Zhou Y, Yu HW, Lu CM, Han KH, Energy Conv. Manag., 149, 495 (2017)
Wang XB, Deng SH, Tan HZ, Adeosun A, Vujanovic M, Yang FX, Duic N, Energy Conv. Manag., 118, 399 (2016)
Lai DG, Zhang GY, Xu GW, Fuel Process. Technol., 158, 191 (2017)
Holland BJ, Hay JN, Polymer, 43(6), 1835 (2002)
Williams PT, Ahmad N, Appl. Energy, 66(2), 113 (2000)
Jaber JO, Probert SD, Williams PT, Energy, 24(9), 761 (1999)
Williams PT, Ahmad N, Fuel, 78, 653 (1999)
Chen ZH, Zhu QJ, Wang X, Xiao B, Liu SM, Energy Conv. Manag., 105, 251 (2015)
Tang L, Yang Y, Meng Y, Wang J, Jiang P, Pang CH, Wu T, Energy Procedia, 158, 1694 (2019)
Yuan XS, He T, Cao HL, Yuan QX, Renew. Energy, 107, 489 (2017)
Zhao S, Liu M, Zhao L, Lu J, Korean J. Chem. Eng., 34(12), 3077 (2017)
Dai MQ, Yu ZS, Fang SW, Ma XQ, Energy Conv. Manag., 192, 1 (2019)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로