Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 27, 2019
Accepted May 31, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Simultaneous removal of NOx and SO2 using two-stage O3 oxidation combined with Ca(OH)2 absorption
1Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 2School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China 3Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
liuxl@ipe.ac.cn
Korean Journal of Chemical Engineering, November 2020, 37(11), 1907-1914(8), 10.1007/s11814-020-0597-z
Download PDF
Abstract
This paper proposes two-stage O3 oxidation combined with Ca(OH)2 for simultaneous removal of NOx and SO2 (NOx: Nitrogen oxides including NO, NO2 and N2O5). In two-stage oxidation, NO was first oxidized to NO2 in an oxidation tube, and NO2 was further oxidized into N2O5 in the spray tower. NOx and SO2 were simultaneously removed in the spray tower. This method can effectively reduce the extra waste of O3 caused by the decomposition of N2O5, especially at high temperature. Effects of various factors on denitrification efficiency were investigated. The results showed that the NOx removal efficiency decreased and O3 extra consumption ratio increased with the increase of oxidation temperature or oxidation reaction time. When the O3/NO molar ratio was 1.8, one-stage O3 oxidation at 150 °C extra wasted 33.3% of O3. With the increase of O3 concentration at site 2, the NOx removal efficiency first increased and then stabilized. Compared with the one-stage O3 oxidation-absorption, the two-stage oxidation-absorption improved NOx removal efficiency from 62.5% to 89%. In addition, the increase of CaSO3 slurry concentration had little effect on the denitrification efficiency.
References
Ramanathan V, Feng Y, Atmos. Environ., 43, 37 (2009)
Li K, Chen L, White SJ, Han K, Lv B, Bao K, Wu X, Gao X, Azzi M, Cen K, Atmos. Res., 192, 38 (2017)
Chen W, Hu F, Qin L, Han J, Zhao B, Tu Y, Yu F, Catalysts, 9, 90 (2019)
Chen WS, Li Z, Hu FL, Qin LB, Han J, Wu GM, Appl. Surf. Sci., 439, 75 (2018)
Li JH, Chang HZ, Ma L, Hao JM, Yang RT, Catal. Today, 175(1), 147 (2011)
Yu J, Guo F, Wang YL, Zhu JH, Liu YY, Su FB, Gao SQ, Xu GW, Appl. Catal. B: Environ., 95(1-2), 160 (2010)
Li Z, Shen Y, Li X, Zhu S, Hu M, Catal. Commun., 82, 55 (2016)
Li Y, Li JP, Xue ZH, New Carbon Mater., 32, 35 (2017)
Sousa JPS, Pereira MFR, Figueiredo JL, Catal. Today, 176(1), 383 (2011)
Zhang WJ, Rabiei S, Bagreev A, Zhuang MS, Rasouli E, Appl. Catal. B: Environ., 83(1-2), 63 (2008)
Zhang WJ, Bagreev A, Rasouli F, Ind. Eng. Chem. Res., 47(13), 4358 (2008)
Sun WY, Ding SL, Zeng SS, Su SJ, Jiang WJ, J. Hazard. Mater., 192(1), 124 (2011)
Skalska K, Miller JS, Ledakowicz S, Chem. Eng. Process., 61, 69 (2012)
Zhang J, Zhang R, Chen X, Tong M, Kang WZ, Guo SP, Zhou YB, Lu J, Ind. Eng. Chem. Res., 53(15), 6450 (2014)
Skalska K, Miller JS, Ledakowicz S, Chem. Eng. Sci., 66(14), 3386 (2011)
Van Durme J, Dewulf J, Leys C, Van Langenhove H, Appl. Catal. B: Environ., 78(3-4), 324 (2008)
Skalska K, Miller JS, Ledakowicz S, Sci. Total. Environ., 408, 3976 (2010)
Han ZT, Yang SL, Pan XX, Zhao DS, Yu JQ, Zhou YT, Xia PF, Zheng DK, Song YH, Yan ZJ, Energy Fuels, 31(3), 3047 (2017)
Fang P, Cen CP, Wang XM, Tang ZJ, Tang ZX, Chen DS, Fuel Process. Technol., 106, 645 (2013)
Chu H, Chien TW, Li SY, Sci. Total Environ., 275, 127 (2001)
Zhao Y, Hao RL, Guo Q, Feng YN, Fuel Process. Technol., 137, 8 (2015)
Zhao Y, Wen XY, Guo TX, Zhou JH, Fuel Process. Technol., 128, 54 (2014)
Hao RL, Mao XZ, Wang Z, Zhao Y, Wang TH, Sun ZH, Yuan B, Li YK, J. Hazard. Mater., 368, 234 (2019)
Park HW, Choi S, Park DW, J. Hazard. Mater., 285, 117 (2015)
Raghunath CV, Mondal MK, Chem. Eng. J., 314, 537 (2017)
Raghunath CV, Mondal MK, Asia-Pacific. J. Chem. Eng., 11, 88 (2016)
Chen J, Zeng X, Deng Y, Mar. Pollut. Bull., 113, 87 (2016)
Adewuyi YG, Khan MA, Chem. Eng. J., 304, 793 (2016)
Adewuyi YG, Khan MA, Chem. Eng. J., 281, 575 (2015)
Ding J, Zhong Q, Zhang SL, Song FJ, Bu YF, Chem. Eng. J., 243, 176 (2014)
Liu YX, Wang Q, Yin YS, Pan JF, Zhang J, Chem. Eng. Res. Des., 92(10), 1907 (2014)
Hao RL, Mao YM, Mao XZ, Wang Z, Gong YP, Zhang ZL, Zhao Y, Chem. Eng. J., 365, 282 (2019)
Sun CL, Zhao N, Wang HQ, Wu ZB, Energy Fuels, 29(5), 3276 (2015)
Ma Q, Wang ZH, Lin FW, Kuang M, Whiddon R, He Y, Liu JZ, Energy Fuels, 30(3), 2302 (2016)
Skalska K, Miller J, Ledakowicz S, Chem. Pap, 64, 269 (2010)
Zhou S, Zhou JX, Feng YM, Zhu YQ, Ind. Eng. Chem. Res., 55(20), 5825 (2016)
Wang ZH, Zhang X, Zhou ZJ, Chen WY, Zhou JH, Cen KF, Energy Fuels, 26(9), 5583 (2012)
Xing Y, Li L, Lu P, Cui J, Li Q, Yan B, Jiang B, Wang M, Environ. Sci. Pollut. Res., 25, 6456 (2018)
Tang NA, Liu Y, Wang HQ, Xiao L, Wu ZBA, Chem. Eng. J., 160(1), 145 (2010)
Wu Q, Sun CL, Wang HQ, Wang T, Wang YJ, Wu ZB, Chem. Eng. J., 341, 157 (2018)
Wang ZH, Zhou JH, Zhu YQ, Wen ZC, Liu JZ, Cen K, Fuel Process. Technol., 88(8), 817 (2007)
Zou Y, Liu X, Zhu T, Tian M, Cai M, ACS. Omega, 4, 21091 (2019)
Sun CL, Zhao N, Zhuang ZK, Wang HQ, Liu Y, Weng XL, Wu ZB, J. Hazard. Mater., 274, 376 (2014)
Ji RJ, Wang J, Xu WQ, Liu XL, Zhu TY, Yan CY, Song JF, Ind. Eng. Chem. Res., 57(43), 14440 (2018)
Lin FW, Wang ZH, Ma Q, He Y, Whiddon R, Zhu YQ, Liu JZ, Energy Fuels, 30(6), 5101 (2016)
Chen GQ, Gao JH, Gao JM, Du QA, Fu XL, Yin YJ, Qin YK, Ind. Eng. Chem. Res., 49(23), 12140 (2010)
Littlejohn D, Wang Y, Chang SG, Environ. Sel. Technol, 27, 2162 (1993)
Li K, Chen L, White SJ, Han K, Lv B, Bao K, Wu X, Gao X, Azzi M, Cen K, Atmos. Res., 192, 38 (2017)
Chen W, Hu F, Qin L, Han J, Zhao B, Tu Y, Yu F, Catalysts, 9, 90 (2019)
Chen WS, Li Z, Hu FL, Qin LB, Han J, Wu GM, Appl. Surf. Sci., 439, 75 (2018)
Li JH, Chang HZ, Ma L, Hao JM, Yang RT, Catal. Today, 175(1), 147 (2011)
Yu J, Guo F, Wang YL, Zhu JH, Liu YY, Su FB, Gao SQ, Xu GW, Appl. Catal. B: Environ., 95(1-2), 160 (2010)
Li Z, Shen Y, Li X, Zhu S, Hu M, Catal. Commun., 82, 55 (2016)
Li Y, Li JP, Xue ZH, New Carbon Mater., 32, 35 (2017)
Sousa JPS, Pereira MFR, Figueiredo JL, Catal. Today, 176(1), 383 (2011)
Zhang WJ, Rabiei S, Bagreev A, Zhuang MS, Rasouli E, Appl. Catal. B: Environ., 83(1-2), 63 (2008)
Zhang WJ, Bagreev A, Rasouli F, Ind. Eng. Chem. Res., 47(13), 4358 (2008)
Sun WY, Ding SL, Zeng SS, Su SJ, Jiang WJ, J. Hazard. Mater., 192(1), 124 (2011)
Skalska K, Miller JS, Ledakowicz S, Chem. Eng. Process., 61, 69 (2012)
Zhang J, Zhang R, Chen X, Tong M, Kang WZ, Guo SP, Zhou YB, Lu J, Ind. Eng. Chem. Res., 53(15), 6450 (2014)
Skalska K, Miller JS, Ledakowicz S, Chem. Eng. Sci., 66(14), 3386 (2011)
Van Durme J, Dewulf J, Leys C, Van Langenhove H, Appl. Catal. B: Environ., 78(3-4), 324 (2008)
Skalska K, Miller JS, Ledakowicz S, Sci. Total. Environ., 408, 3976 (2010)
Han ZT, Yang SL, Pan XX, Zhao DS, Yu JQ, Zhou YT, Xia PF, Zheng DK, Song YH, Yan ZJ, Energy Fuels, 31(3), 3047 (2017)
Fang P, Cen CP, Wang XM, Tang ZJ, Tang ZX, Chen DS, Fuel Process. Technol., 106, 645 (2013)
Chu H, Chien TW, Li SY, Sci. Total Environ., 275, 127 (2001)
Zhao Y, Hao RL, Guo Q, Feng YN, Fuel Process. Technol., 137, 8 (2015)
Zhao Y, Wen XY, Guo TX, Zhou JH, Fuel Process. Technol., 128, 54 (2014)
Hao RL, Mao XZ, Wang Z, Zhao Y, Wang TH, Sun ZH, Yuan B, Li YK, J. Hazard. Mater., 368, 234 (2019)
Park HW, Choi S, Park DW, J. Hazard. Mater., 285, 117 (2015)
Raghunath CV, Mondal MK, Chem. Eng. J., 314, 537 (2017)
Raghunath CV, Mondal MK, Asia-Pacific. J. Chem. Eng., 11, 88 (2016)
Chen J, Zeng X, Deng Y, Mar. Pollut. Bull., 113, 87 (2016)
Adewuyi YG, Khan MA, Chem. Eng. J., 304, 793 (2016)
Adewuyi YG, Khan MA, Chem. Eng. J., 281, 575 (2015)
Ding J, Zhong Q, Zhang SL, Song FJ, Bu YF, Chem. Eng. J., 243, 176 (2014)
Liu YX, Wang Q, Yin YS, Pan JF, Zhang J, Chem. Eng. Res. Des., 92(10), 1907 (2014)
Hao RL, Mao YM, Mao XZ, Wang Z, Gong YP, Zhang ZL, Zhao Y, Chem. Eng. J., 365, 282 (2019)
Sun CL, Zhao N, Wang HQ, Wu ZB, Energy Fuels, 29(5), 3276 (2015)
Ma Q, Wang ZH, Lin FW, Kuang M, Whiddon R, He Y, Liu JZ, Energy Fuels, 30(3), 2302 (2016)
Skalska K, Miller J, Ledakowicz S, Chem. Pap, 64, 269 (2010)
Zhou S, Zhou JX, Feng YM, Zhu YQ, Ind. Eng. Chem. Res., 55(20), 5825 (2016)
Wang ZH, Zhang X, Zhou ZJ, Chen WY, Zhou JH, Cen KF, Energy Fuels, 26(9), 5583 (2012)
Xing Y, Li L, Lu P, Cui J, Li Q, Yan B, Jiang B, Wang M, Environ. Sci. Pollut. Res., 25, 6456 (2018)
Tang NA, Liu Y, Wang HQ, Xiao L, Wu ZBA, Chem. Eng. J., 160(1), 145 (2010)
Wu Q, Sun CL, Wang HQ, Wang T, Wang YJ, Wu ZB, Chem. Eng. J., 341, 157 (2018)
Wang ZH, Zhou JH, Zhu YQ, Wen ZC, Liu JZ, Cen K, Fuel Process. Technol., 88(8), 817 (2007)
Zou Y, Liu X, Zhu T, Tian M, Cai M, ACS. Omega, 4, 21091 (2019)
Sun CL, Zhao N, Zhuang ZK, Wang HQ, Liu Y, Weng XL, Wu ZB, J. Hazard. Mater., 274, 376 (2014)
Ji RJ, Wang J, Xu WQ, Liu XL, Zhu TY, Yan CY, Song JF, Ind. Eng. Chem. Res., 57(43), 14440 (2018)
Lin FW, Wang ZH, Ma Q, He Y, Whiddon R, Zhu YQ, Liu JZ, Energy Fuels, 30(6), 5101 (2016)
Chen GQ, Gao JH, Gao JM, Du QA, Fu XL, Yin YJ, Qin YK, Ind. Eng. Chem. Res., 49(23), 12140 (2010)
Littlejohn D, Wang Y, Chang SG, Environ. Sel. Technol, 27, 2162 (1993)