Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 8, 2020
Accepted June 30, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Production of levulinic acid from wet microalgae in a biphasic one-pot reaction process
Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
jaewlee@kaist.ac.kr
Korean Journal of Chemical Engineering, November 2020, 37(11), 1933-1941(9), 10.1007/s11814-020-0622-2
Download PDF
Abstract
This work addresses the conversion of wet microalgae to levulinic acid (LA) using a one-pot reaction system. Utilizing moisture in microalgae forms a biphasic system with an organic solvent of 1, 2-dichloroethane (DCE) is formed. This system enhances the LA yield by making an acidic environment through the decomposition of DCE in a small quantity and the recovery of products in each aqueous and organic phase. With lipid-rich Nannochloropsis gaditana and carbohydrate-rich Chlorella species, the effects of reaction variables of temperature, water content, and DCE dosage on the LA production were investigated. The LA yield was 30.13 wt% and 28.15 wt% based on the mass of total hexoses (43-47 wt% of convertible hexoses) for the two types of microalgae at 160 °C, while the yield of free fatty acids reached 90.13 w/w% at 180 °C based on the esterifiable lipid. This biphasic system facilitates the forward reaction and the product recovery for concurrent reaction and separation.
References
Lipinsky ES, Science, 212, 1465 (1981)
Son J, Kim B, Park J, Yang J, Lee JW, Bioresour. Technol., 259, 465 (2018)
Kim YM, Lee HW, Jang SH, Jeong JH, Ryu SM, Jung SC, Park YK, Korean J. Chem. Eng., 37(3), 493 (2020)
Kang HJ, Kim JH, Korean J. Chem. Eng., 36(12), 1965 (2019)
Lee JH, Lee HU, Lee JH, Lee SK, Yoo HY, Park CH, Kim SW, Korean J. Chem. Eng., 36(1), 71 (2019)
Supaporn P, Yeom SH, Korean J. Chem. Eng., 34(2), 360 (2017)
Kim B, Im H, Lee JW, Bioresour. Technol., 185, 421 (2015)
Dikshit PK, Jun HB, Kim BS, Korean J. Chem. Eng., 37(3), 387 (2020)
Gong C, Wei J, Tang X, Zeng X, Sun Y, Lin L, Korean J. Chem. Eng., 36(5), 740 (2019)
Lee KS, Lee YJ, Chang HN, Jeong KJ, Korean J. Chem. Eng., 36(6), 903 (2019)
Im H, Lee H, Park MS, Yang JW, Lee JW, Bioresour. Technol., 152, 534 (2014)
Du ZY, Ma XC, Li Y, Chen P, Liu YH, Lin XY, Lei HW, Ruan R, Bioresour. Technol., 139, 397 (2013)
Koberg M, Cohen M, Ben-Amotz A, Gedanken A, Bioresour. Technol., 120, 4265 (2011)
Kim B, Heo HY, Son J, Yang J, Chang YK, Lee JH, Lee JW, Algal Res., 41, 101557 (2019)
Mafokoane M, Seguel J, Garcia R, Diaz de Leon JN, Sepulveda C, Escalona N, Catal. Today, In press (2020).
Bozell JJ, Petersen GR, Green Chem., 12, 539 (2004)
Rackemann DW, Doherty WO, Biofuels, Bioproducts. Biorefining, 5, 198 (2011)
Gurbuz EI, Wettstein SG, Dumesic JA, ChemSusChem, 5, 383 (2012)
Jeong H, Jang SK, Hong CY, Kim SH, Lee SY, Lee SM, Choi JW, Choi IG, Bioresour. Technol., 225, 183 (2017)
Yang J, Park J, Son J, Kim B, Lee JW, Bioresour. Technol. Rep., 2, 84 (2018)
Lee JW, Westerberg AW, AIChE J., 47(6), 1333 (2001)
Kim B, Yang J, Kim M, Lee JW, Bioresour. Technol., 303, 122898 (2020)
Dutta S, Yu IKM, Tsang DCW, Su Z, Hu C, Wu KCW, Yip ACK, Ok YS, Poon CS, Bioresour. Technol., 298, 122544 (2020)
Zhu JY, Pan XJ, Zalesny RS, Appl. Microbiol. Biotechnol., 87(3), 847 (2010)
Tomas-Pejo E, Alvira P, Ballesteros M, Negro MJ, Biofuels: Alternative feedstocks and conversion processes, Academic press, Massachusetts (2011).
Muranaka Y, Suzuki T, Sawanishi H, Hasegawa I, Mae K, Ind. Eng. Chem. Res., 53(29), 11611 (2014)
Zhang K, Pei ZJ, Wang DH, Bioresour. Technol., 199, 21 (2016)
Lee O, Seong DH, Lee CG, Lee EY, J. Ind. Eng. Chem., 29, 24 (2015)
Cao LC, Yu IKM, Cho DW, Wang D, Tsang DCW, Zhang SC, Ding SM, Wang LL, Ok YS, Bioresour. Technol., 273, 251 (2019)
Jeong GT, Ra CH, Hong YK, Kim JK, Kong IS, Kim SK, Park DH, Bioprocess Biosyst Eng., 38, 207 (2015)
Park J, Kim B, Chang YK, Lee JW, Bioresour. Technol., 230, 8 (2017)
Im H, Kim B, Lee JW, Bioresour. Technol., 193, 386 (2015)
Chang C, Cen PL, Ma XJ, Bioresour. Technol., 98(7), 1448 (2007)
Shen JC, Wyman CE, AIChE J., 58(1), 236 (2012)
Runge T, Zhang CH, Ind. Eng. Chem. Res., 51(8), 3265 (2012)
Girisuta B, Danon B, Manurung R, Janssen LPBM, Heeres HJ, Bioresour. Technol., 99(17), 8367 (2008)
Elumalai S, Agarwal B, Sangwan RS, Bioresour. Technol., 218, 232 (2016)
Ramli NAS, Amin NAS, Appl. Catal. B: Environ., 463, 487 (2015)
Park J, Kim B, Son J, Lee JW, Bioresour. Technol., 249, 494 (2018)
Kim B, Park J, Son J, Lee JW, Bioresour. Technol., 244, 423 (2017)
Sluiter A, et al., Determination of structural carbohydrates and lignin in biomass, National Renewable Energy Laboratory (NREL), Golden, CO (2008).
Flannelly T, Lopes M, Kupiainen L, Dooley S, Leahy JJ, Rsc Adv., 6, 5797 (2016)
Victor A, Pulidindi IN, Gedanken A, Rsc Adv., 4, 44706 (2014)
Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Molecules, 15, 5258 (2010)
Ma H, Wang FR, Yu YH, Wang LF, Li XH, Ind. Eng. Chem. Res., 54(10), 2657 (2015)
Seemala B, Haritos V, Tanksale A, ChemCatChem, 8, 640 (2016)
van Zandvoort I, Wang Y, Rasrendra CB, van Eck ERH, Bruijnincx PCA, Heeres HJ, Weckhuysen BM, ChemSusChem, 6, 1745 (2013)
Lee SY, Cho JM, Chang YK, Oh YK, Bioresour. Technol., 244, 1317 (2017)
Reddy HK, Muppaneni T, Ponnusamy S, Sudasinghe N, Pegallapati A, Selvaratnam T, Seger M, Dungan B, Nirmalakhandan N, Schaub T, Holguin FO, Lammers P, Voorhies W, Deng SG, Appl. Energy, 165, 943 (2016)
Son J, Kim B, Park J, Yang J, Lee JW, Bioresour. Technol., 259, 465 (2018)
Kim YM, Lee HW, Jang SH, Jeong JH, Ryu SM, Jung SC, Park YK, Korean J. Chem. Eng., 37(3), 493 (2020)
Kang HJ, Kim JH, Korean J. Chem. Eng., 36(12), 1965 (2019)
Lee JH, Lee HU, Lee JH, Lee SK, Yoo HY, Park CH, Kim SW, Korean J. Chem. Eng., 36(1), 71 (2019)
Supaporn P, Yeom SH, Korean J. Chem. Eng., 34(2), 360 (2017)
Kim B, Im H, Lee JW, Bioresour. Technol., 185, 421 (2015)
Dikshit PK, Jun HB, Kim BS, Korean J. Chem. Eng., 37(3), 387 (2020)
Gong C, Wei J, Tang X, Zeng X, Sun Y, Lin L, Korean J. Chem. Eng., 36(5), 740 (2019)
Lee KS, Lee YJ, Chang HN, Jeong KJ, Korean J. Chem. Eng., 36(6), 903 (2019)
Im H, Lee H, Park MS, Yang JW, Lee JW, Bioresour. Technol., 152, 534 (2014)
Du ZY, Ma XC, Li Y, Chen P, Liu YH, Lin XY, Lei HW, Ruan R, Bioresour. Technol., 139, 397 (2013)
Koberg M, Cohen M, Ben-Amotz A, Gedanken A, Bioresour. Technol., 120, 4265 (2011)
Kim B, Heo HY, Son J, Yang J, Chang YK, Lee JH, Lee JW, Algal Res., 41, 101557 (2019)
Mafokoane M, Seguel J, Garcia R, Diaz de Leon JN, Sepulveda C, Escalona N, Catal. Today, In press (2020).
Bozell JJ, Petersen GR, Green Chem., 12, 539 (2004)
Rackemann DW, Doherty WO, Biofuels, Bioproducts. Biorefining, 5, 198 (2011)
Gurbuz EI, Wettstein SG, Dumesic JA, ChemSusChem, 5, 383 (2012)
Jeong H, Jang SK, Hong CY, Kim SH, Lee SY, Lee SM, Choi JW, Choi IG, Bioresour. Technol., 225, 183 (2017)
Yang J, Park J, Son J, Kim B, Lee JW, Bioresour. Technol. Rep., 2, 84 (2018)
Lee JW, Westerberg AW, AIChE J., 47(6), 1333 (2001)
Kim B, Yang J, Kim M, Lee JW, Bioresour. Technol., 303, 122898 (2020)
Dutta S, Yu IKM, Tsang DCW, Su Z, Hu C, Wu KCW, Yip ACK, Ok YS, Poon CS, Bioresour. Technol., 298, 122544 (2020)
Zhu JY, Pan XJ, Zalesny RS, Appl. Microbiol. Biotechnol., 87(3), 847 (2010)
Tomas-Pejo E, Alvira P, Ballesteros M, Negro MJ, Biofuels: Alternative feedstocks and conversion processes, Academic press, Massachusetts (2011).
Muranaka Y, Suzuki T, Sawanishi H, Hasegawa I, Mae K, Ind. Eng. Chem. Res., 53(29), 11611 (2014)
Zhang K, Pei ZJ, Wang DH, Bioresour. Technol., 199, 21 (2016)
Lee O, Seong DH, Lee CG, Lee EY, J. Ind. Eng. Chem., 29, 24 (2015)
Cao LC, Yu IKM, Cho DW, Wang D, Tsang DCW, Zhang SC, Ding SM, Wang LL, Ok YS, Bioresour. Technol., 273, 251 (2019)
Jeong GT, Ra CH, Hong YK, Kim JK, Kong IS, Kim SK, Park DH, Bioprocess Biosyst Eng., 38, 207 (2015)
Park J, Kim B, Chang YK, Lee JW, Bioresour. Technol., 230, 8 (2017)
Im H, Kim B, Lee JW, Bioresour. Technol., 193, 386 (2015)
Chang C, Cen PL, Ma XJ, Bioresour. Technol., 98(7), 1448 (2007)
Shen JC, Wyman CE, AIChE J., 58(1), 236 (2012)
Runge T, Zhang CH, Ind. Eng. Chem. Res., 51(8), 3265 (2012)
Girisuta B, Danon B, Manurung R, Janssen LPBM, Heeres HJ, Bioresour. Technol., 99(17), 8367 (2008)
Elumalai S, Agarwal B, Sangwan RS, Bioresour. Technol., 218, 232 (2016)
Ramli NAS, Amin NAS, Appl. Catal. B: Environ., 463, 487 (2015)
Park J, Kim B, Son J, Lee JW, Bioresour. Technol., 249, 494 (2018)
Kim B, Park J, Son J, Lee JW, Bioresour. Technol., 244, 423 (2017)
Sluiter A, et al., Determination of structural carbohydrates and lignin in biomass, National Renewable Energy Laboratory (NREL), Golden, CO (2008).
Flannelly T, Lopes M, Kupiainen L, Dooley S, Leahy JJ, Rsc Adv., 6, 5797 (2016)
Victor A, Pulidindi IN, Gedanken A, Rsc Adv., 4, 44706 (2014)
Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Molecules, 15, 5258 (2010)
Ma H, Wang FR, Yu YH, Wang LF, Li XH, Ind. Eng. Chem. Res., 54(10), 2657 (2015)
Seemala B, Haritos V, Tanksale A, ChemCatChem, 8, 640 (2016)
van Zandvoort I, Wang Y, Rasrendra CB, van Eck ERH, Bruijnincx PCA, Heeres HJ, Weckhuysen BM, ChemSusChem, 6, 1745 (2013)
Lee SY, Cho JM, Chang YK, Oh YK, Bioresour. Technol., 244, 1317 (2017)
Reddy HK, Muppaneni T, Ponnusamy S, Sudasinghe N, Pegallapati A, Selvaratnam T, Seger M, Dungan B, Nirmalakhandan N, Schaub T, Holguin FO, Lammers P, Voorhies W, Deng SG, Appl. Energy, 165, 943 (2016)