ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 8, 2019
Accepted May 31, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Microwave-synthesized high-performance mesoporous SBA-15 silica materials for CO2 capture

Department of Chemical Engineering, Indian Institute of Technology (ISM), Dhanbad - 826004, Jharkhand, India
asamanta@iitism.ac.in
Korean Journal of Chemical Engineering, November 2020, 37(11), 1951-1962(12), 10.1007/s11814-020-0596-0
downloadDownload PDF

Abstract

Microwave-assisted post-synthetic detemplating method was applied to remove successfully the occluded organic template from the mesoporous silica frameworks of as-synthesized SBA-15 within a short period of time compared to a conventional method, such as furnace calcination. The nitrogen adsorption/desorption isotherm studies showed that the resultant detemplated SBA-15 had a very high specific surface area of 1,271m2/g, large pore size of 9.21 nm and high pore volume of 2.10 cm3/g; while the powder X-ray diffraction patterns and high-resolution TEM images of these support materials revealed the presence of highly ordered mesopores without any structural shrinkage. Both the microwave power and time during post-synthetic microwave irradiation were found to influence the morphological structure of the SBA-15 support. To evaluate the adsorption performance of the microwave-irradiated SBA-15 support, CO2 adsorption uptake was measured after functionalizing it with different loadings of polyethyleneimine (PEI) under 9.7% CO2/N2 mixture at 75 °C. The maximum CO2 uptake was 3.63mmol CO2/g (0.16 g/g), with an optimum PEI loading of 70 wt%. Because of the significant improvement in structural characteristics, the microwave-irradiated SBA-15 supports facilitated more PEI incorporation that contributed to about 15% higher CO2 uptake than that of conventional furnace calcined one. In addition, the sorbent demonstrated very good cyclic stability when tested over 25 cycles and for a total duration of 20 h in humid conditions.

References

Cubasch U, et al., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2013).
Rao AB, Rubin ES, Environ. Sci. Technol., 36, 4467 (2002)
Singh D, Croiset E, Douglas PL, Douglas MA, Energy Conv. Manag., 44(19), 3073 (2003)
Le MUT, Lee SY, Park SJ, Int. J. Hydrog. Energy, 39(23), 12340 (2014)
Choe Y, Oh KJ, Kim SS, Park SW, Korean J. Chem. Eng., 27(3), 962 (2010)
Hwang KS, Han L, Park DW, Oh KJ, Kim SS, Park SW, Korean J. Chem. Eng., 27(1), 241 (2010)
Sharma P, Baek IH, Park YW, Nam SC, Park JH, Park SD, Park SY, Korean J. Chem. Eng., 29(2), 249 (2012)
Zhao A, Samanta A, Sarkar P, Gupta R, Ind. Eng. Chem. Res., 52(19), 6480 (2013)
Dey R, Gupta R, Samanta A, Sep. Sci. Technol., 53(16), 2683 (2018)
Sanz-Perez ES, Olivares-Marin M, Arencibia A, Sanz R, Calleja G, Maroto-Valer MM, Int. J Greenh. Gas Con., 17, 366 (2013)
Liu ZY, Pudasainee D, Liu QX, Gupta R, Sep. Purif. Technol., 156, 259 (2015)
Kishor R, Ghoshal AK, Chem. Eng. J., 300, 236 (2016)
Zhu T, Yang S, Choi DK, Row KH, Korean J. Chem. Eng., 27(6), 1910 (2010)
Boonpoke A, Chiarakorn S, Laosiripojana N, Towprayoon S, Chidthaisong A, Korean J. Chem. Eng., 29(1), 89 (2012)
Chen C, Kim J, Ahn WS, Korean J. Chem. Eng., 31(11), 1919 (2014)
Manianglung C, Pacia RM, Ko YS, Korean J. Chem. Eng., 36(8), 1267 (2019)
Son WJ, Choi JS, Ahn WS, Microporous Mesoporous Mater., 113, 31 (2008)
Chen C, Yang ST, Ahn WS, Ryoo R, Chem. Commun., 24, 3627 (2009)
Chen C, You KS, Ahn JW, Ahn WS, Korean J. Chem. Eng., 27(3), 1010 (2010)
Nakanishi T, Ohkubo K, Kojima T, Fukuzumi S, J. Am. Chem. Soc., 131(2), 577 (2009)
Olea A, Sanz-Perez ES, Arencibia A, Sanz R, Calleja G, Adsorption, 19, 2 (2013)
Bae YK, Han OH, Microporous Mesoporous Mater., 106, 304 (2007)
Silva LCC, Reis TVS, Cosentino IC, Fantini MCA, Matos JR, Bruns RE, Microporous Mesoporous Mater., 133, 1 (2010)
Kleitz F, Schmidt W, Schuth F, Microporous Mesoporous Mater., 65, 1 (2003)
Tian B, Liu X, Yu C, Gao F, Luo Q, Xie S, Tu B, Zhao D, Chem. Commun., 11, 1186 (2002)
Lai TL, Shu YY, Lin YC, Chen WN, Wang CB, Mater. Lett., 63, 1693 (2009)
Avila SGD, Silva LCC, Matos JR, Microporous Mesoporous Mater., 234, 277 (2016)
Yuan MH, Wang LF, Yang RT, Langmuir, 30(27), 8124 (2014)
Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD, Science, 279(5350), 548 (1998)
Berube F, Kaliaguine S, Microporous Mesoporous Mater., 115, 469 (2008)
Barczak M, Michalak-Zwierz K, Gdula K, Tyszczuk-Rotko K, Dobrowolski R, Dabrowski A, Microporous Mesoporous Mater., 211, 162 (2015)
Yilmaz MS, Piskin S, J. Therm. Anal. Calorim., 121, 1255 (2015)
Peng Z, Hwang JY, Int. Mater. Rev., 60, 30 (2015)
Chen LF, Microwave electronics: Measurement and materials characterization, John Wiley & Sons. Ltd., USA (2004).
Mujumdar AS, Handbook of industrial drying, fourth Ed., CRC, Boca Raton (2006).
Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW, Energy Fuels, 16(6), 1463 (2002)
Liu J, Cheng D, Liu Y, Wu Z, Energy Fuels, 27, 5416 (2013)
Klinthong W, Huang CH, Tan CS, Ind. Eng. Chem. Res., 55, 6481 (2106)
Wang X, Ma X, Song C, Locke DR, Siefert S, Winans RE, Mollmer J, Lange M, Moller A, Glaser R, Microporous Mesoporous Mater., 169, 103 (2013)
Heydari-Gorji A, Sayari A, Chem. Eng. J., 173(1), 72 (2011)
Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R, Ind. Eng. Chem. Res., 51(4), 1438 (2012)
Sayari A, Belmabkhout Y, J. Am. Chem. Soc., 132(18), 6312 (2010)
Sartori G, Savage DW, Ind. Eng. Chem. Fundam., 22, 239 (1983)
Donaldson TL, Nguyen YN, Ind. Eng. Chem. Fundam., 19, 260 (1980)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로