ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 19, 2020
Accepted June 3, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Fast and effective methylene blue adsorption onto graphene oxide/amberlite nanocomposite: Evaluation and comparison of optimization techniques

Engineering Faculty, Department of Chemical Engineering, Usak University, 64200 Usak, Turkey, Korea 1Engineering Faculty, Department of Electrical and Electronics Engineering, Uşak University, 64200 Uşak, Turkey 2Material Science and Engineering Department, Engineering Faculty, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
Korean Journal of Chemical Engineering, November 2020, 37(11), 1975-1984(10), 10.1007/s11814-020-0600-8
downloadDownload PDF

Abstract

Since graphene is a miracle material of the 21st century, a considerable number of researchers have studied the oxidation of graphite to synthesize graphene oxide and its applications. In this study, polymeric resin (amberlite XAD7HP) supported graphene oxide (GO) nanocomposite was synthesized successfully. Analytical methods, namely Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were utilized to characterize the new structure. Methylene blue (MB) solution was selected as a model discharged textile wastewater for adsorption application of synthesized nanocomposite. The adsorption data were modelled by response surface methodology (RSM), random forest (RF) and artificial neural networks (ANN) methods. The optimal condition parameters, which maximize the adsorption uptake capability, were determined by the genetic algorithm. Statistical errors and correlation coefficient values of each developed model were calculated independently to compare models’ performance. According to the results, the developed RF model outperformed the other models. On the other hand, the ANN model had the lowest correlation coefficient value among the models.

References

Yusuf M, Handbook of renewable materials for coloration and finishing, Wiley-VCH, Weinheim (2018).
Ali H, Water Air Soil Pollut., 213, 251 (2010)
Hu TL, Wu SC, Bioresour. Technol., 77(1), 93 (2001)
Bhattacharyya KG, Sharma A, Dyes Pigment., 65, 51 (2005)
Sabarinathan C, Karuppasamy P, Vijayakumar CT, Arumuganathan T, Microchem. J., 146, 315 (2019)
Saeed M, Muneer M, Akram N, ul Haq A, Afzal N, Hamayun M, Chem. Eng. Res. Des., 148, 218 (2019)
Xia G, Lu Y, Gao X, Gao C, Xu H, Clean Soil Air Water., 43, 229 (2015)
Golder AK, Samata AN, Ray S, J. Hazard. Mater., 127, 140 (2005)
Afshariani F, Roosta A, J. Clean Prod., 225, 133 (2019)
Ghaedi M, Mortazavi K, Jamshidi K, Roosta M, Karami B, Toxicol. Environ. Chem., 94, 846 (2012)
Ertas M, Acemioglu B, Alma MH, Usta M, J. Hazard. Mater., 183(1-3), 421 (2010)
Nunez SC, Yoshimura TM, Ribeiro MS, Junqueria HC, Maciel C, Countinhoneto MD, Baptista MS, J. Photochem. Photobiol. B-Biol., 150, 31 (2015)
Abd EI-Latif MM, Ibrahim AM, EI-Kady MF, J Am Sci., 6(6), 267 (2010)
Ghosh D, Bhattacharyya KG, Appl. Clay Sci., 20, 295 (2002)
Lewis RJ, Sax's dangerous properties of industrial materials, 11th Ed. Wiley-Interscience Publication, Wiley & Hoboken, New Jersey (2004).
Wilson NR, Pandey PA, Bealand R, Young RJ, Kinloch IA, Gong L, Sloan J, ACS Nano., 3, 2547 (2009)
Ma HL, Zhang Y, Hu QH, Yan D, Yu ZZ, Zhai M, J. Mater. Chem., 22, 5914 (2012)
Dabrowski A, Podkoscienly P, Hubicki Z, Barzak M, Chemosphere, 58(8), 1049 (2005)
Islam A, Laskar MA, Ahmad A, Environ. Monit. Assess., 175, 201 (2011)
Myers RH, et al., Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons, USA (2016).
Camposeco-Negrete C, J. Clean Prod., 91, 109 (2015)
Ghaedi M, Daneshfar A, Ahmadi A, Momeni MS, J. Ind. Eng. Chem., 21, 587 (2015)
Cao R, Fan M, Hu J, Ruan W, Xiong K, Wei X, Materials, 10, 1279 (2017)
Cao R, Fan M, Hu J, Ruan W, Wu X, Wei X, Materials, 11, 428 (2018)
Fan M, Hu J, Cao R, Xiong K, Wei X, Sci. Rep., 7, 18040 (2017)
Sun L, Guo Y, Fu C, Li J, Li Z, Food Chem., 136, 1022 (2013)
Montgomery DC, Design and analysis of experiments, John Wiley & Sons, New York (2017).
Box GE, Draper NR, Empirical model-building and response surfaces, John Wiley & Sons, New York (1987).
Box G, et al., Statistics for experimenters. An introduction to desing, data analysis, and model building, Wiley, New York (1978).
Morgan JN, Messenger RC, Ann Arbor, Survey Research Center, Institute for Social Research, University of Michigan (1973).
Breiman L, Friedman J, Stone CJ, Olshen RA, Classification and regression trees, CRC Press, New York (1984).
Kumar PS, Ramalingam S, Sathishkumar K, Korean J. Chem. Eng., 28(1), 149 (2011)
Han X, Niu X, Ma X, Korean J. Chem. Eng., 29(4), 494 (2012)
Liu T, Li Y, Du Q, Sun J, Jiao Y, Yang G, Wang Z, Xia Y, Zhang W, Wang K, Zhu H, Wu D, Colloids Surf. B: Biointerfaces, 90, 197 (2012)
Wu FC, Tseng RL, Juang RS, Water Res., 35, 613 (2001)
Wu CH, J. Hazard. Mater., 144(1-2), 93 (2007)
Liu Y, Zheng Y, Wang A, Adsorpt. Sci. Technol., 28, 913 (2010)
Auta M, Hameed BH, Chem. Eng. J., 175, 233 (2011)
Liu Y, Wang JT, Zheng Y, Wang AQ, Chem. Eng. J., 184, 248 (2012)
Sapawe N, Jalil AA, Triwahyono S, Shah MIA, Jusoh R, Salleh NFM, Hameed BH, Karim AH, Chem. Eng. J., 229, 388 (2013)
Ghaedi M, Ghazanfarkhani MD, Khodadoust S, Sohrabi N, Oftade M, J. Ind. Eng. Chem., 20(4), 2548 (2014)
Ahmed MJ, Theydan SK, J. Anal. Appl. Pyrolysis, 105, 199 (2014)
Xin-hui D, Srinivasakannan C, Jin-sheng L, J. Taiwan Inst. Chem. E, 45, 1618 (2014)
Duan XH, Zhang ZB, Srinivasakannan C, Wang F, Liang JS, Chem. Eng. Res. Des., 92(7), 1249 (2014)
Junior OP, Cazetta AL, Gomes RC, Barizao EO, Souza IPAF, Martins AC, Asefa T, Almeida VC, J. Anal. Appl. Pyrolysis, 105, 166 (2014)
Mazaheri H, Ghaedi M, Hajati S, Dashtiana K, Purkaitc MK, RSC Adv., 5, 83427 (2015)
Asfaram A, Ghaedi M, Hajati S, Rezaeinejad M, Goudarzi A, Purkait MK, J. Taiwan Inst. Chem. E, 53, 80 (2015)
Setiabudi HD, Jusoh R, Suhaimi SFRM, Masrur SF, J. Taiwan Inst. Chem. E., 63, 363 (2016)
Azzaz AA, et al., 7th International Renewable Energy Congress (IREC), Hammamet, 1-5 (2016).
Pirsaheb M, Rezai Z, Mansouri AM, Rastegar A, Alahabadi A, Sani AR, Sharafi K, Desalin. Water Treat., 57, 5888 (2016)
Tehrani MS, Zare-Dorabei R, RSC Adv., 6, 27416 (2016)
Islam MA, Sabar S, Benhouria A, Khanday WA, Asif M, Hameed BH, J. Taiwan Inst. Chem. E, 74, 96 (2017)
Anfar Z, El Haouti R, Lhanafi S, Benafqir M, Azougarh Y, El Alem N, J. Environ. Chem. Eng., 5, 5857 (2017)
Ardekani PS, Karimi H, Ghaedi M, Asfaram A, Purkait MK, J. Mol. Liq., 229, 114 (2017)
Lingamdinne LP, Singh J, Choi JS, Chang YY, Yang JK, Karri RR, Koduru JK, J. Mol. Liq., 265, 416 (2018)
Mahmoodi-Babolan N, Heydari A, Nematollahzadeh A, Bioresour. Technol., 294, 122084 (2019)
Igwegbe CA, Mohmmadi L, Ahmadi S, Rahdar A, Khadkhodaiy D, Dehghani R, Rahdar S, MethodsX, 6, 1779 (2019)
Hasan R, Chong CC, Setiabudi HD, Jusoh R, Jalil AA, Environ. Technol. Innovation, 13, 62 (2019)
Ramezani F, Zare-Dorabei R, Polyhedron, 166, 153 (2019)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로