ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 12, 2020
Accepted June 4, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Adsorption isotherms and kinetics for the removal of cationic dye by Cellulose-based adsorbent biocomposite films

1Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand 2Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand 3Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, 10330, Thailand
duangdao.a@chula.ac.th
Korean Journal of Chemical Engineering, November 2020, 37(11), 1999-2010(12), 10.1007/s11814-020-0602-6
downloadDownload PDF

Abstract

Various fillers (commercial, nipa palm, sisal activated carbon, zeolite) were incorporated with regenerated cellulose matrix that dissolved using lithium chloride/N, N-dimethylacetamide solution. The biosorbent films were successfully prepared via solution casting and then characterized by Fourier transform infrared spectrometer (FTIR), Xray Diffractometer (XRD), thermogravimetric analyzer (TGA), and scanning electron microscope (SEM). The biocomposite films with embedded commercial activated carbon exhibited the largest adsorption capacity of methylene blue (146.81mg g-1). Although the adsorption ability of the nipa palm and sisal activated carbon biocomposite was lower than the commercial activated carbon biosorbent film, both nipa palm and sisal activated carbon still could potentially be used as an alternative filler for cationic dye removal. On the contrary, zeolite had low adsorption efficiency owing to its morphology. The equilibrium adsorption experiment revealed that the Langmuir isotherm model best fitted the biocomposite films with commercial and sisal activated carbon, whereas the Freundlich adsorption model suited the biosorbent films with nipa palm activated carbon and zeolite than other models. The kinetics results of adsorption for all biocomposite films were well described using a pseudo-second-order kinetic model. The cellulose/activated carbon films would be promisingly utilized as a biosorbent for treatment of dye-contaminated wastewater.

References

Du Y, Zheng P, Korean J. Chem. Eng., 31(11), 2051 (2014)
Huang Q, Liu MY, Chen JY, Wang K, Xu DZ, Deng FJ, Huang HY, Zhang X, Wei Y, J. Mater. Sci., 51(17), 8116 (2016)
Song M, Duan Z, Qin R, Xu X, Liu S, Song S, Zhang M, Li Y, Shi J, Korean J. Chem. Eng., 36(6), 869 (2019)
Li Q, Zhao Y, Wang L, Aiqin W, Korean J. Chem. Eng., 28(8), 1658 (2011)
Sabri AA, Albayati TM, Alazawi RA, Korean J. Chem. Eng., 32(9), 1835 (2015)
Bhakta AK, Kumari S, Hussain S, Martis P, Mascarenhas RJ, Delhalle J, Mekhalif Z, J. Mater. Sci., 54(1), 200 (2019)
Mahmoudi K, Hosni K, Hamdi N, Srasra E, Korean J. Chem. Eng., 32(2), 274 (2015)
Zhu GT, Xing XJ, Wang JQ, Zhang XW, J. Mater. Sci., 52(13), 7664 (2017)
Zhou Y, Zhang L, Cheng Z, J. Mol. Liq., 212, 739 (2015)
Kan T, Strezov V, Evans TJ, Renew. Sust. Energ. Rev., 57, 1126 (2016)
Shen Y, Renew. Sust. Energ. Rev., 43, 281 (2015)
Cui X, Hao H, He Z, Stoffella PJ, Yang X, J. Environ. Manage., 173, 95 (2016)
Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Hyun S, Bioresour. Technol., 148, 196 (2013)
Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E, J. Anal. Appl. Pyrolysis, 101, 72 (2013)
Kong SH, Loh SK, Bachmann RT, Rahim SA, Salimon J, Renew. Sust. Energ. Rev., 39, 729 (2014)
Nestler F, Burhenne L, Amtenbrink MJ, Aicher T, Fuel Process. Technol., 145, 31 (2016)
Tang JC, Zhu WY, Kookana R, Katayama A, J. Biosci. Bioeng., 116(6), 653 (2013)
Trubetskaya A, Jensen PA, Jensen AD, Steibel M, Spliethoff H, Glarborg P, Fuel Process. Technol., 140, 205 (2015)
Trubetskaya A, Jensen PA, Jensen AD, Llamas ADG, Umeki K, Glarborg P, Fuel Process. Technol., 143, 118 (2016)
Manya JJ, Roca FX, Perales JF, J. Anal. Appl. Pyrolysis, 103, 86 (2013)
Satyamurthy P, Vigneshwaran N, Enzyme Micro. Technol., 52, 20 (2013)
Lin T, Goos E, Riedel U, Fuel Process. Technol., 115, 246 (2013)
Miao C, Hamad WY, Cellulose, 20, 2221 (2013)
Ghaderi M, Mousavi M, Yousefi H, Labbafi M, Carbohydr. Polym., 104, 59 (2014)
Pullawan T, Wilkinson AN, Eichhorn SJ, J. Mater. Sci., 48(22), 7847 (2013)
Soykeabkaew N, Arimoto N, Nishino T, Peijs T, Compos. Sci. Technol., 68, 2201 (2008)
Somsesta N, et al., The 10th International Conference on Materials Science and Technology, Bangkok, Thailand (2018).
Njoku VO, Foo KY, Asif M, Hameed BH, Chem. Eng. J., 250, 198 (2014)
Lu CY, Liu C, Rao GP, J. Hazard. Mater., 151(1), 239 (2008)
Dada AO, Olalekan AP, Olatunya AM, Dada O, J. Appl. Chem., 3, 38 (2012)
Li M, Wang Z, Li B, Desalination Water Treat., 57, 16970 (2016)
Ma X, Liu C, Anderson DP, Chang PR, Chemosphere, 165, 399 (2016)
Choeichom P, Sirivat A, Ionics, 24, 2829 (2018)
Das S, Mahanta SP, Bania KK, RSC Adv., 4, 51496 (2014)
Liou TH, Chem. Eng. J., 158(2), 129 (2010)
Salahudeen N, Ahmed AS, Dauda M, Waziri SM, Jibril BY, Al Muhtaseb AH, Aust. J. Ind. Res., 1, 10 (2014)
Muniandy L, Adam F, Mohamed AR, Ng EP, Microporous Mesoporous Mater., 197, 316 (2014)
Hospodarova V, Hospodarova E, Stevulova N, Am. J. Anal. Chem., 9, 303 (2018)
Nakasone K, Ikematsu S, Kobayashi T, Ind. Eng. Chem. Res., 55(1), 30 (2016)
Qin C, Soykeabkaew N, Xiuyuan N, Peijs T, Carbohydr. Polym., 71, 458 (2008)
Liu G, Hu Z, Guan R, Zhao Y, Zhang H, Zhang B, Korean J. Chem. Eng., 33(11), 3141 (2016)
Liu L, Gao ZY, Su XP, Chen X, Jiang L, Yao JM, ACS Sustain. Chem. Eng., 3, 432 (2015)
Melo BC, Francisco AA, Paulino AA, Cardoso VA, Pereira AGB, Fajardo AR, Rodrigues FHA, Carbohydr. Polym., 181, 358 (2018)
Luo XG, Zhang LN, J. Hazard. Mater., 171(1-3), 340 (2009)
Zaheer Z, Bawazir WA, Al-Bukhari SM, Basaleh AS, Mater. Chem. Phys., 232, 109 (2019)
Igwe JC, Abia AA, Ecl Quim, 32, 33 (2007)
Tran HN, You SJ, Bandegharaei AH, Chao HP, Water Res., 120, 88 (2017)
Pei Y, Wu XJ, Xu GQ, Sun ZJ, Zheng XJ, Liu J, Tang KY, J. Chem. Technol. Biotechnol., 92(6), 1276 (2017)
Hajati S, Ghaedi M, Barazesh B, Karimi F, Sahraei R, Daneshfar A, Asghari A, J. Ind. Eng. Chem., 20(4), 2421 (2014)
Gercel O, Ozcan A, Ozcan AS, Gercel HF, Appl. Surf. Sci., 253(11), 4843 (2007)
Li GT, Zhu WY, Zhang CY, Zhang S, Liu LL, Zhu LF, Zhao WG, Bioresour. Technol., 206, 16 (2016)
Siddiqui SH, Groundwat. Sustain. Dev., 6, 141 (2018)
Ibupoto AS, Qureshi UA, Ahmed F, Khatri Z, Khatri M, Maqsood M, Brohi RZ, Kim IS, Chem. Eng. Res. Des., 136, 744 (2018)
Gurses A, Dogar C, Yalcin M, Acikyildiz M, Bayrak R, Karaca S, J. Hazard. Mater., 131(1-3), 217 (2006)
Seow WY, Hauser CAE, J. Environ. Chem. Eng., 4, 1714 (2016)
Ghorai S, Sarkar A, Raoufi M, Panda AB, Schonherr H, Pal S, ACS Appl. Mater. Interfaces, 6, 4766 (2014)
Ali I, Asim M, Khan TA, J. Environ. Manage., 113, 170 (2012)
Jawad AH, Abdulhameed AS, Surf. Interfaces, 18, 100422 (2020)
Konicki W, Aleksandrzak M, Moszynski D, Mijowska E, J. Colloid Interface Sci., 496, 188 (2017)
Prajapati AK, Mondal MK, J. Mol. Liq., 307, 112949 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로