Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 22, 2020
Accepted June 30, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effects of carbonization conditions on the microporous structure and high-pressure methane adsorption behavior of glucose-derived graphene
Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor Darul Ta‘zim, Malaysia 1Data-driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Sengen 1-2-1 Tsukuba, Ibaraki 305-0047, Japan
Korean Journal of Chemical Engineering, November 2020, 37(11), 2068-2074(7), 10.1007/s11814-020-0619-x
Download PDF
Abstract
A simple, promising, environmentally friendly, and high yield technique to synthesize high specific surface area (SSA) and porous graphene-like materials from glucose precursor through carbonization and controlled chemical iron chloride (FeCl3) activation was demonstrated. Designing this nanoporous graphene-based adsorbent with high SSA, abundant micropore volume, tunable pore size distribution, and high adsorption capacity, is crucial in order to deal with the demands of large-scale reversible natural gas storage applications. Raman spectroscopy, BET method of analysis, and N2 adsorption/desorption measurements at -196 °C were adopted to evaluate the structural and textural properties of the resultant glucose derived-graphene (gluGr) samples. The effects of different carbonization conditions, such as the inert environments (argon, helium, and argon) and temperatures (700, 800, 900, and 1,000 °C), have been studied. A glucose-derived graphene carbonized under nitrogen environment at 700 °C (NGr700) with highly interconnected network of micropores and mesopores and large SSA (767m2/g) exhibited excellent methane (CH4) storage property with exceptionally high adsorption capacity, superior to other glucose-derived graphene (gluGr) samples. A maximum volumetric capacity up to 42.08 cm3/g was obtained from CH4 adsorption isotherm at 25 °C and 35 bar. Note that the adsorption performance of the CH4 is highly associated with the SSA and microporosity of the gluGr samples, especially NGr700 that was successfully synthesized by FeCl3 activation under N2 environment.
Keywords
References
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666 (2004)
Sang M, Shin J, Kim K, Yu KJ, Nanomaterials, 9, 374 (2019)
Hassani A, Mosavian MTH, Ahmadpour A, Farhadian N, Korean J. Chem. Eng., 34(3), 876 (2017)
Chowdhury Shamik, Balasubramanian Rajasekhar, Ind. Eng. Chem. Res., 55(29), 7906 (2016)
Bhuyan SA, Uddin N, Islam M, Bipasha FA, Int. Nano Lett., 6, 63 (2016)
Gadipelli S, Guo ZX, Prog. Mater. Sci., 69, 1 (2015)
Purkait T, Singh G, Singh M, Kumar D, Dey RS, Sci. Rep., 7, 1 (2017)
Berg JM, Tymoczko JL, Stryer L, Biochemistry 5th Ed. W.H. Freeman and Company, New York (2002).
Hongo T, Sugiyama J, Yamazaki A, Yamasaki A, Ind. Eng. Chem. Res., 52(5), 2111 (2013)
Chen Y, Zhang X, Zhang H, Sun X, Zhang D, Ma Y, RSC Adv., 2, 7727 (2012)
Prahas D, Kartika Y, Indraswati N, Ismadji S, Chem. Eng. J., 140(1-3), 32 (2008)
Tongpoothorn W, Sriuttha M, Homchan P, Chanthai S, Ruangviriyachai C, Chem. Eng. Res. Des., 89(3A), 335 (2011)
Jiang ZX, Liu Y, Sun XP, Tian FP, Sun FX, Liang CH, You WS, Han CR, Li C, Langmuir, 19(3), 731 (2003)
Vargas DP, Giraldo L, Moreno-Pirajan JC, Adsorption, 22, 717 (2016)
Rufford TE, Hullicova-Jurcakova D, Zhu Z, Lu GQ, J. Mater. Res., 25, 1451 (2011)
Sahira J, Mandira A, Prasad PB, Ram PR, Res. J. Chem. Sci., 3, 19 (2013)
Xu Z, Yuan Z, Zhang D, Chen W, Huang Y, Zhang T, Tian D, Deng H, Zhou Y, Sun Z, J. Clean Prod., 192, 453 (2018)
Singh P, Bahadur J, Pal K, Graphene, 6, 61 (2017)
Li XH, Kurasch S, Kaiser U, Antonietti M, Angew. Chem.-Int. Edit., 51, 9689 (2012)
Danish M, Hashim R, Ibrahim MNM, Sulaiman O, J. Anal. Appl. Pyrolysis, 104, 418 (2013)
Zhang B, Song J, Yang G, Han B, Chem. Sci., 5, 4656 (2014)
Jagiello J, Thommes M, Carbon, 42, 1227 (2004)
Indayaningsih N, Destyorini F, Purawiardi RI, Insiyanda DR, Widodo H, IOP Conf. Ser.: J. Phys. Conf. Ser., 817, 1 (2016)
Song C, Wang T, Qiu JS, Cao YM, Cai T, J. Porous Mat., 15, 1 (2008)
Amieva EJ, et al., Graphene-based materials functionalization with natural polymeric biomolecules, INTECH Open Access, United Kingdom (2016).
Groen JC, Peffer LAA, Perez-Ramirez J, Microporous Mesoporous Mater., 60, 1 (2003)
Wang S, Feng QH, Zha M, Javadpour F, Hu QH, Energy Fuels, 32(1), 169 (2018)
Kaniyoor A, Ramaprabhu S, AIP Adv., 2, 1 (2012)
Biru EI, Iovu H, Graphene nanocomposites studied by Raman spectroscopy, INTECH Open Access, United Kingdom (2018).
Wu JB, Lin ML, Cong X, Liu HN, Tan PH, Chem. Soc. Rev., 47, 1822 (2018)
Khan QA, Shaur A, Khan TA, Joya YF, Awan MS, Cogent Chem., 3, 1 (2017)
Himeno S, Komatsu T, Fujita S, J. Chem. Eng. Data, 50(2), 369 (2005)
Sang M, Shin J, Kim K, Yu KJ, Nanomaterials, 9, 374 (2019)
Hassani A, Mosavian MTH, Ahmadpour A, Farhadian N, Korean J. Chem. Eng., 34(3), 876 (2017)
Chowdhury Shamik, Balasubramanian Rajasekhar, Ind. Eng. Chem. Res., 55(29), 7906 (2016)
Bhuyan SA, Uddin N, Islam M, Bipasha FA, Int. Nano Lett., 6, 63 (2016)
Gadipelli S, Guo ZX, Prog. Mater. Sci., 69, 1 (2015)
Purkait T, Singh G, Singh M, Kumar D, Dey RS, Sci. Rep., 7, 1 (2017)
Berg JM, Tymoczko JL, Stryer L, Biochemistry 5th Ed. W.H. Freeman and Company, New York (2002).
Hongo T, Sugiyama J, Yamazaki A, Yamasaki A, Ind. Eng. Chem. Res., 52(5), 2111 (2013)
Chen Y, Zhang X, Zhang H, Sun X, Zhang D, Ma Y, RSC Adv., 2, 7727 (2012)
Prahas D, Kartika Y, Indraswati N, Ismadji S, Chem. Eng. J., 140(1-3), 32 (2008)
Tongpoothorn W, Sriuttha M, Homchan P, Chanthai S, Ruangviriyachai C, Chem. Eng. Res. Des., 89(3A), 335 (2011)
Jiang ZX, Liu Y, Sun XP, Tian FP, Sun FX, Liang CH, You WS, Han CR, Li C, Langmuir, 19(3), 731 (2003)
Vargas DP, Giraldo L, Moreno-Pirajan JC, Adsorption, 22, 717 (2016)
Rufford TE, Hullicova-Jurcakova D, Zhu Z, Lu GQ, J. Mater. Res., 25, 1451 (2011)
Sahira J, Mandira A, Prasad PB, Ram PR, Res. J. Chem. Sci., 3, 19 (2013)
Xu Z, Yuan Z, Zhang D, Chen W, Huang Y, Zhang T, Tian D, Deng H, Zhou Y, Sun Z, J. Clean Prod., 192, 453 (2018)
Singh P, Bahadur J, Pal K, Graphene, 6, 61 (2017)
Li XH, Kurasch S, Kaiser U, Antonietti M, Angew. Chem.-Int. Edit., 51, 9689 (2012)
Danish M, Hashim R, Ibrahim MNM, Sulaiman O, J. Anal. Appl. Pyrolysis, 104, 418 (2013)
Zhang B, Song J, Yang G, Han B, Chem. Sci., 5, 4656 (2014)
Jagiello J, Thommes M, Carbon, 42, 1227 (2004)
Indayaningsih N, Destyorini F, Purawiardi RI, Insiyanda DR, Widodo H, IOP Conf. Ser.: J. Phys. Conf. Ser., 817, 1 (2016)
Song C, Wang T, Qiu JS, Cao YM, Cai T, J. Porous Mat., 15, 1 (2008)
Amieva EJ, et al., Graphene-based materials functionalization with natural polymeric biomolecules, INTECH Open Access, United Kingdom (2016).
Groen JC, Peffer LAA, Perez-Ramirez J, Microporous Mesoporous Mater., 60, 1 (2003)
Wang S, Feng QH, Zha M, Javadpour F, Hu QH, Energy Fuels, 32(1), 169 (2018)
Kaniyoor A, Ramaprabhu S, AIP Adv., 2, 1 (2012)
Biru EI, Iovu H, Graphene nanocomposites studied by Raman spectroscopy, INTECH Open Access, United Kingdom (2018).
Wu JB, Lin ML, Cong X, Liu HN, Tan PH, Chem. Soc. Rev., 47, 1822 (2018)
Khan QA, Shaur A, Khan TA, Joya YF, Awan MS, Cogent Chem., 3, 1 (2017)
Himeno S, Komatsu T, Fujita S, J. Chem. Eng. Data, 50(2), 369 (2005)