ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 28, 2020
Accepted July 11, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effects of heat sink structure on heat transfer performance cooled by semiconductor and nanofluids

1Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, China University of Mining and Technology, Xuzhou 221116, China 2School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China
qicong@cumt.edu.cn
Korean Journal of Chemical Engineering, December 2020, 37(12), 2104-2116(13), 10.1007/s11814-020-0634-y
downloadDownload PDF

Abstract

On account of the low heat dissipation problem of common cooling systems, an experimental system with enhanced structures was set to improve the heat transfer of heat sink cooled by semiconductor and TiO2-water nanofluids. The influences of structures (smooth surface, metal foam with PPI=30, cylindrical bulge (height: H=2mm, staggered arrangement), cylindrical groove (depth: D'=2 mm, staggered arrangement)), nanoparticle mass fractions (ω= 0.0-0.5 wt%), input power of the semiconductor (P=2W, 4W, 6W), and Reynolds numbers (Re=414-1,119) on the flow and heat transfer properties of TiO2-water nanofluids were studied. The compositive thermal and hydraulic properties of the enhanced technologies were analyzed by thermal efficiency. Results indicated that the combination of semiconductor and metal foam shows the most excellent performance compared with other combinations and it can be enhanced by 48.1% at best. Nanofluids with ω=0.4 wt% display the best cooling capacity instead of the highest concentration. The cooling effect shows an increasing trend with the input power of the semiconductor.

References

Chen MJ, He YR, Zhu JQ, Wen DS, Appl. Energy, 181, 65 (2016)
Chen MJ, He YR, Wang XZ, Hu YW, Appl. Energy, 211, 735 (2018)
Xuan Y, Li Q, Int. J. Heat Fluid Flow, 21(1), 58 (2000)
Fang X, Xuan Y, Li Q, Appl. Phys. Lett., 95(20), 203108 (2009)
Li HR, He YR, Wang CH, Wang XZ, Hu YW, Appl. Energy, 236, 117 (2019)
Hu YW, He YR, Zhang ZD, Wen DS, Sol. Energy Mater. Sol. Cells, 192, 94 (2019)
Nikkhah V, Sarafraz MM, Hormozi F, Chem. Biochem. Eng. Q., 29, 405 (2015)
Arya A, Sarafraz MM, Shahmiri S, Madani SA, Nikkhah V, Nakhjavani SM, Heat. Mass Transf., 54(4), 985 (2018)
Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S, Int. J. Heat Mass Transf., 117, 474 (2018)
Li Z, Shahsavar A, Alrashed AA, Talebizadehsardari P, Appl. Therm. Eng., 167, 114777 (2020)
Zhang R, Aghakhani S, Pordanjani AH, Vahedi SM, Shahsavar A, Afrand M, Eur. Phys. J Plus., 135(2), 1 (2020)
Baratpour M, Karimipour A, Afrand M, Wongwises S, Int. Commun. Heat Mass Transf., 74, 108 (2016)
Atashrouz S, Mozaffarian M, Pazuki G, Korean J. Chem. Eng., 33(9), 2522 (2016)
Alrashed AA, Karimipour A, Bagherzadeh SA, Safaei MR, Afrand M, Int. J. Heat Mass Transf., 127, 925 (2018)
Vafaei M, Afrand M, Sina N, Kalbasi R, Sourani F, Teimouri H, Phys. E Syst. Nanos., 85, 90 (2017)
Li Z, Sheikholeslami M, Chamkha AJ, Raizah ZA, Saleem S, Comput. Method. Appl. Mech. Eng., 338, 618 (2020)
Kim IH, Sim HW, Hong HH, Kim DW, Lee WJ, Lee DK, Korean J. Chem. Eng., 36(6), 1004 (2019)
Komeilibirjandi A, Raffiee AH, Maleki A, Nazari MA, Shadloo MS, J. Therm. Anal. Calorim., 139(4), 2679 (2020)
Hojjat M, Etemad SG, Bagheri R, Korean J. Chem. Eng., 27(5), 1391 (2010)
Chun BH, Kang HU, Kim SH, Korean J. Chem. Eng., 25(5), 966 (2008)
Mohammed HI, Sardari PT, Giddings D, Int. J. Therm. Sci., 146, 106099 (2019)
Yang L, Du K, Zhang Z, Int. J. Mech. Sci., 168, 105310 (2020)
Bazdar H, Toghraie D, Pourfattah F, Akbari OA, Nguyen HM, Asadi AA, J. Therm. Anal. Calorim., 139(3), 2365 (2020)
Shahsavar A, Sardari PT, Toghraie D, Int. J. Numer. Meth. Heat Fluid Flow, 29(3), 915 (2019)
Izadi M, Mohebbi R, Karimi D, Sheremet MA, Chem. Eng. Process., 125, 56 (2018)
Mohebbi R, Izadi M, Chamkha AJ, Phys. Fluids, 29(12), 122009 (2017)
Mehryan SA, Izadi M, Chamkha AJ, Sheremet MA, J. Mol. Liq., 263, 510 (2018)
Izadi M, Hoghoughi G, Mohebbi R, Sheremet MA, J. Mol. Liq., 261, 357 (2018)
Izadi M, Mohebbi R, Delouei AA, Sajjadi H, Int. J. Mech. Sci., 151, 154 (2019)
Sheikholeslami M, Jafaryar M, Li ZX, Int. J. Heat Mass Transf., 124, 980 (2018)
Sheikholeslami M, Ganji DD, Gorjibandpy M, Appl. Therm. Eng., 100, 805 (2016)
Sheikholeslami M, Jafaryar M, Li Z, J. Mol. Liq., 263, 489 (2018)
Jafaryar M, Sheikholeslami M, Li Z, Moradi R, J. Therm. Anal. Calorim., 135, 305 (2019)
Li Z, Sheikholeslami M, Ayani M, Shamlooei M, Shafee A, Waly M, Tlili I, Physica A, 524, 540 (2019)
Nasiri M, Etemad SG, Bagheri R, Korean J. Chem. Eng., 28(12), 2230 (2011)
Yang FL, Zhou SJ, Zhang CX, Korean J. Chem. Eng., 32(5), 816 (2015)
Qi C, Zhao N, Cui X, Chen TT, Hu JD, Int. J. Heat Mass Transf., 123, 320 (2018)
Zhao N, Guo LX, Qi C, Chen TT, Cui X, Energy Conv. Manag., 181, 235 (2019)
Zhao N, Qi C, Chen TT, Tang JH, Cui X, Int. J. Heat Mass Transf., 135, 16 (2019)
Dehghan M, Valipour MS, Saedodin S, Energy Conv. Manag., 110, 22 (2016)
Chen JJ, Han JC, Xu DG, Int. J. Hydrog. Energy, 44(23), 11546 (2019)
Shojaeian M, Shojaee SMN, Korean J. Chem. Eng., 30(4), 823 (2013)
Sardari PT, Grant DM, Giddings D, Walker GS, Gillott M, Energy Conv. Manag., 201, 112151 (2019)
Sardari PT, Mohammed HI, Giddings D, Walker GS, Gillott M, Grant DM, Energy, 189, 116108 (2019)
Sardari PT, Giddings D, Grant D, Gillott M, Walker GS, Renew. Energy, 148, 987 (2020)
Naphon P, Klangchart S, Wongwises S, Int. Commun. Heat Mass Transf., 36(8), 834 (2009)
Naphon P, Energy Conv. Manag., 48(10), 2708 (2007)
Gonzalezaraoz MP, Sanchezramirez JF, Jimenezperez JL, Chigoanota E, Herreraperez JL, Mendozaalvarez JG, Nat. Sci., 4(12), 1022 (2012)
Murshed SMS, Santos FJV, de Castro CA, J. Nano, 2(4), 261 (2013)
Qi C, Hu JD, Liu MN, Guo LX, Rao ZH, Energy Conv. Manag., 153, 557 (2017)
Pak BC, Cho YI, Exp. Heat Transf., 11(2), 151 (1998)
Qi C, Wan Y, Li C, Han D, Rao Z, Int. J. Heat Mass Transf., 115(Part B), 1072 (2017)
Kline S, Mech. Eng., 75, 3 (1953)
Wu X, Wu H, J. Chem. Ind. Eng., 59(9), 2181 (2008)
Qi C, Liang L, Rao ZH, Int. J. Heat Mass Transf., 94, 316 (2016)
Qi C, Wang GQ, Yang LY, Wan YL, Rao ZH, Int. J. Heat Mass Transf., 105, 664 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로