ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 17, 2020
Accepted July 19, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A multiscale study on the effects of dynamic capillary pressure in two-phase flow in porous media

1Department of Petroleum Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran 2Zodan Solutions Ltd., London, United Kingdom, Iran 3Reservoir Modeling and Simulation Centre, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
m.ghaedi@shirazu.ac.ir
Korean Journal of Chemical Engineering, December 2020, 37(12), 2124-2135(12), 10.1007/s11814-020-0645-8
downloadDownload PDF

Abstract

Capillary pressure is usually considered as a function of the rock and fluid properties, and saturation. However, recent studies have shown that capillary forces also are a function of the rate of change of saturation. Moreover, although it was observed that dynamic forces are highly scale dependent, the role of these effects in large-scale flow practices is still unclear. In this study, using an innovative numerical simulation approach, the impact of the mentioned parameters was studied in a highly heterogeneous oil reservoir that is under waterflooding process. It is observed that the role of dynamic capillary pressure, using routinely measured dynamic capillary coefficient values, is not important in large-scale problems. However, it would be important in the higher capillary coefficient values that are several orders of magnitude larger than the values reported in previous experimental studies. Furthermore, the role of rock heterogeneity is discussed and it is shown that neglecting the dynamic capillary effects in heterogeneous media may lead to misleading results in the prediction of the injection front behavior in the reservoir. The dynamic capillary effects, by lowering the imbibition capillary pressure in the front, leads to more frontal movement of the injection fluid. Also, it is shown that the dynamic effects are more sensible at points close to the injection wells in homogenous reservoirs, but, in the heterogenous models it is more dependent on rock properties than the distance from the injection wells.

References

Rahman MK, Chen ZX, Rahman SS, J. Energy Resour. Technol.-Trans. ASME, 125(3), 169 (2003)
Bear J, Modeling phenomena of flow and transport in porous media, Vol. 31, Springer, New York (2018).
Abbasi J, Riazi M, Ghaedi M, Mirzaei-Paiaman A, J. Pet. Sci. Eng., 150, 108 (2017)
John RF, Principles of applied reservoir simulation, Elsevier, Netherland (2001).
Fan Z, Yang D, Chai D, Li X, J. Energy Resour. Technol., 141, 2 (2018)
Zhang M, Ayala LF, J. Energy Resour. Technol., 142, 4 (2019)
Das DB, Hassanizadeh SM, Upscaling multiphase flow in porous media, Springer, Berlin (2005).
Bottero S, Experimental study of dynamic capillary pressure effect in two-phase flow in porous media, Copenhagen, Denmark (2006).
Das DB, Mirzaei M, AIChE J., 58(12), 3891 (2012)
Mirzaei M, Das DB, Chem. Eng. Sci., 62(7), 1927 (2007)
Juanes R, Adv. Water Resour., 31, 661 (2008)
Barenblatt GI, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 5, 144 (1971).
Shi Y, Yang D, J. Energy Resour. Technol., 139, 062902 (2017)
Manthey S, Hassanizadeh SM, Helmig R, Upscaling multiph. Flow porous media from pore to core beyond, Springer, Berlin (2005).
Hassanizadeh SM, Celia MA, Dahle HK, Vadose Zo. J., 1, 38 (2002)
DiCarlo DA, Mirzaei M, Jessen K, SPE J., 16, 812 (2011)
Abidoye LK, Das DB, Adv. Water Resour., 74, 212 (2014)
Stauffer F, IAHR symposium on scale effects in porous media, Thessaloniki, Greece, 29, 3-35 (1978).
Blunt MJ, Multiphase flow in permeable media, Cambridge University Press, London (2017).
Hanspal NS, Das DB, AIChE J., 58(6), 1951 (2012)
Joekar-Niasar V, Hassanizadeh SM, Int. J. Multiph. Flow, 37(2), 198 (2011)
Amaziane B, Milisic JP, Panfilov M, Pankratov L, Phys. Rev. E, 31, 9 (2012)
Abbasi J, Ghaedi M, Riazi M, Saint Petersburg 2018: Innovations in Geosciences, Saint Petersburg (2018).
Bottero S, Hassanizadeh SM, Pyrak-Nolte LJ, AGU Fall Meeting Abstracts, Alberta (2009).
Tian L, Feng B, Zheng S, Gu D, Ren X, Yang D, J. Energy Resour. Technol., 141, 2 (2018)
Mohammad RS, Tareen MYK, Mengel A, Shah SAR, Iqbal J, J. Pet. Explor. Prod. Technol., 10, 1891 (2020)
Li Y, Liu C, Li H, Chen S, Huang S, J. Hydrol., 584, 124709 (2020)
Lie KA, Reservoir Simulation Toolbox (MRST), Cambridge University Press, 2019, London (2015).
Nilsen HM, Lie KA, Andersen O, Comput. Geosci., 20, 49 (2016)
Abbasi J, Ghaedi M, Riazi M, J. Pet. Sci. Eng., 162, 44 (2018)
Lie KA, Krogstad S, Ligaarden IS, Natvig JR, Nilsen HM, Skaflestad B, Comput. Geosci., 16, 297 (2012)
Gambolati G, Pini G, Int. J. Numer. Methods Fluids, 29, 343 (1999)
Das DB, Thirakulchaya T, Deka L, Hanspal NS, Environ. Prog., 2, 1 (2015)
Christie MA, Blunt MJ, SPE Reserv. Eval. Eng., 4, 308 (2001)
Debbabi Y, Jackson MD, Hampson GJ, Salinas P, Transp. Porous Media, 120(1), 183 (2017)
Debbabi Y, Jackson MD, Hampson GJ, Fitch PJR, Salinas P, Transp. Porous Media, 117(2), 281 (2017)
Chatzis I, Morrow NR, Soc. Pet. Eng. J., 24, 555 (1984)
Li Y, Li H, Chen S, Lu Y, Li X, Luo H, Liu C, Cui X, Int. Pet. Technol. Conf., IPTC 2019, Beijing (2019).
Hou TY, Int. J. Numer. Methods Fluids, 47, 707 (2005)
Dahle HK, et al., Upscaling multiph. Flow porous media from pore to core beyond, Springer, Berlin, Germany (2005).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로