Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 20, 2020
Accepted August 27, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Image cytometry of irregular microplastic particles in a cross-slot microchannel utilizing viscoelastic focusing
1Department of Energy Systems Research, Ajou University, Suwon 16499, Korea 2Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea 3Department of Polymer Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, Korea 4Department of Chemical Engineering, Ajou University, Suwon 16499, Korea
sjlee@suwon.ac.kr
Korean Journal of Chemical Engineering, December 2020, 37(12), 2136-2142(7), 10.1007/s11814-020-0670-7
Download PDF
Abstract
Microplastic particles have recently attracted much attention owing to their potential adverse effects on marine and terrestrial environments. Although several studies have been conducted on this topic, one of the prominent existing challenges is developing analytical methods to precisely characterize isolated microplastics. Specifically, a systematic method that determines both the size and shape of irregular micron-sized particles is required because conventional optical methods provide only two-dimensional images of microplastics and cannot easily handle cases of tilting or aggregation of particles. In this study, we demonstrate that previously developed microfluidic technologies can be successfully applied to measure the size and shape of oblate microparticles utilizing viscoelastic particle focusing. Furthermore, this technique is also applicable for irregular microplastic fragments that are predominantly found in environmental samples.
Keywords
References
Moore CJ, Environ. Res., 108, 131 (2008)
Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R, Environ. Sci. Technol., 45, 9175 (2011)
Ehlers SM, Ellrich JA, Mar. Pollut. Bull., 151, 110845 (2020)
Leslie H, Brandsma S, Van Velzen M, Vethaak A, Environ. Int., 101, 133 (2017)
Lim T, Jung GY, Kim JH, Park SO, Park J, Kim YT, Kang SJ, Jeong HY, Kwak SK, Joo SH, Nat. Commun., 11, 1 (2020)
Park H, Oh MJ, Kim PG, Kim G, Jeong DH, Ju BK, Lee WS, Chung HM, Kang HJ, Kwon JH, Environ. Sci. Technol., 54, 1503 (2020)
Scheurer M, Bigalke M, Environ. Sci. Technol., 52, 3591 (2018)
Choi JS, Jung YJ, Hong NH, Hong SH, Park JW, Mar. Pollut. Bull, 129, 231 (2018)
Gray AD, Weinstein JE, Environ. Toxicol. Chem., 36, 3074 (2017)
Wright SL, Thompson RC, Galloway TS, Environ. Pollut., 178, 483 (2013)
Eo S, Hong SH, Song YK, Lee J, Lee J, Shim WJ, Environ. Pollut., 238, 894 (2018)
Bergmann M, Gutow L, Klages M, Marine anthropogenic litter, Springer, New York (2015).
Bouwmeester H, Hollman PC, Peters RJ, Environ. Sci. Pollut. Res., 49, 8932 (2015)
Barboza LGA, Lopes C, Oliveira P, Bessa F, Otero V, Henriques B, Raimundo J, Caetano M, Vale C, Guilhermino L, Sci. Total Environ., 717, 134625 (2020)
Hernandez LM, Xu EG, Larsson HC, Tahara R, Maisuria VB, Tufenkji N, Environ. Sci. Technol., 53, 12300 (2019)
Naji A, Nuri M, Vethaak AD, Environ. Pollut., 235, 113 (2018)
Fries E, Dekiff JH, Willmeyer J, Nuelle MT, Ebert M, Remy D, Environ. Sci. Process. Impacts, 15, 1949 (2013)
Shim WJ, Hong SH, Eo SE, Anal. Methods, 9, 1384 (2017)
Zhang S, Wang J, Liu X, Qu F, Wang X, Wang X, Li Y, Sun Y, Trends Anal. Chem., 111, 62 (2019)
Yunker PJ, Still T, Lohr MA, Yodh AG, Nature, 476(7360), 308 (2011)
Ding T, Song K, Clays K, Tung CH, Adv. Mater., 21(19), 1936 (2009)
Wokaun A, Bergman J, Heritage J, Glass A, Liao P, Olson D, Phys. Rev. B, 24, 849 (1981)
Royer P, Bijeon JL, Goudonnet JP, Inagaki T, Arakawa ET, Surf. Sci., 217(1-2), 384 (1989)
Kim J, Kim JY, Kim Y, Lee SJ, Kim JM, Anal. Chem., 89, 8662 (2017)
Li J, Wei Y, Deng Y, Gu D, Yang X, Zhang L, Tu B, Zhao D, J. Mater. Chem., 20, 6460 (2010)
Li D, Wang Y, Plasmonic nanostructures as surfaceenhanced Raman scattering (SERS) substrate for protein biomarker sensing, InTech, London (2017).
Mazzoli A, Favoni O, Powder Technol., 225, 65 (2012)
Batchelor G, J. Fluid Mech., 46, 813 (1971)
Cha S, Shin T, Lee SS, Shim W, Lee G, Lee SJ, Kim Y, Kim JM, Anal. Chem., 84, 10471 (2012)
Bae YB, Jang HK, Shin TH, Phukan G, Tran TT, Lee G, Hwang WR, Kim JM, Lab Chip, 16, 96 (2016)
Xia Y, Whitesides GM, Annu. Rev. Mater. Sci., 28, 153 (1998)
Ahn SJ, Ahn KH, Lee SJ, Colloid Polym. Sci., 294, 859 (2016)
Jeffery GB, Proc. R. Soc. Lond., 102, 161 (1922)
Petrie CJS, J. Non-Newton. Fluid Mech., 87(2-3), 369 (1999)
Bird RB, Armstrong RC, Hassager O, Dynamics of polymeric fluids fluid mechanics, Wiley Interscience, New York (1987).
Rodd LE, Cooper-White JJ, Boger DV, McKinley GH, J. Non-Newton. Fluid Mech., 143(2-3), 170 (2007)
Rodd LE, Scott TP, Boger DV, Cooper-White JJ, McKinley GH, J. Non-Newton. Fluid Mech., 129(1), 1 (2005)
Ho B, Leal L, J. Fluid Mech., 76, 783 (1976)
Yang S, Kim JY, Lee SJ, Lee SS, Kim JM, Lab Chip, 11, 266 (2011)
Kim B, Kim JM, Biomicrofluidics, 10, 024111 (2016)
Leshansky AM, Bransky A, Korin N, Dinnar U, Phys. Rev. Lett., 98, 234501 (2007)
Tehrani MA, J. Rheol., 40(6), 1057 (1996)
Han M, Kim C, Kim M, Lee S, J. Rheol., 43(5), 1157 (1999)
Leighton D, Acrivos A, J. Fluid Mech., 181, 415 (1987)
Dylla-Spears R, Townsend JE, Jen-Jacobson L, Sohn LL, Muller SJ, Lab Chip, 10, 1543 (2010)
Schowalter WR, Luikov A, Minkowyc W, Progress in heat and mass transfer: Selected papers of the 1970 international seminar, Elsevier, New York (2013).
Guazzelli E, Morris JF, A physical introduction to suspension dynamics, Cambridge University Press, New York (2011).
Jahnke A, Arp HPH, Escher BI, Gewert B, Gorokhova E, Kuhnel D, Ogonowski M, Potthoff A, Rummel C, Schmitt-Jansen M, Environ. Sci. Technol. Lett., 4, 85 (2017)
Kim Y, Ahn KH, Lee SJ, J. Membr. Sci., 534, 25 (2017)
Kursun I, Min. Proc. Ext. Met. Rev., 30, 346 (2009)
Mora C, Kwan A, Ceme. Concr. Res., 30, 351 (2000)
Krumbein WC, J. Sediment. Res., 11, 64 (1941)
Olson E, J. GXP Compliance, 15, 85 (2011)
Gossett DR, Henry T, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao J, Clark AT, Di Carlo D, Proc. Natl. Acad. Sci. U.S.A., 109, 7630 (2012)
Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R, Environ. Sci. Technol., 45, 9175 (2011)
Ehlers SM, Ellrich JA, Mar. Pollut. Bull., 151, 110845 (2020)
Leslie H, Brandsma S, Van Velzen M, Vethaak A, Environ. Int., 101, 133 (2017)
Lim T, Jung GY, Kim JH, Park SO, Park J, Kim YT, Kang SJ, Jeong HY, Kwak SK, Joo SH, Nat. Commun., 11, 1 (2020)
Park H, Oh MJ, Kim PG, Kim G, Jeong DH, Ju BK, Lee WS, Chung HM, Kang HJ, Kwon JH, Environ. Sci. Technol., 54, 1503 (2020)
Scheurer M, Bigalke M, Environ. Sci. Technol., 52, 3591 (2018)
Choi JS, Jung YJ, Hong NH, Hong SH, Park JW, Mar. Pollut. Bull, 129, 231 (2018)
Gray AD, Weinstein JE, Environ. Toxicol. Chem., 36, 3074 (2017)
Wright SL, Thompson RC, Galloway TS, Environ. Pollut., 178, 483 (2013)
Eo S, Hong SH, Song YK, Lee J, Lee J, Shim WJ, Environ. Pollut., 238, 894 (2018)
Bergmann M, Gutow L, Klages M, Marine anthropogenic litter, Springer, New York (2015).
Bouwmeester H, Hollman PC, Peters RJ, Environ. Sci. Pollut. Res., 49, 8932 (2015)
Barboza LGA, Lopes C, Oliveira P, Bessa F, Otero V, Henriques B, Raimundo J, Caetano M, Vale C, Guilhermino L, Sci. Total Environ., 717, 134625 (2020)
Hernandez LM, Xu EG, Larsson HC, Tahara R, Maisuria VB, Tufenkji N, Environ. Sci. Technol., 53, 12300 (2019)
Naji A, Nuri M, Vethaak AD, Environ. Pollut., 235, 113 (2018)
Fries E, Dekiff JH, Willmeyer J, Nuelle MT, Ebert M, Remy D, Environ. Sci. Process. Impacts, 15, 1949 (2013)
Shim WJ, Hong SH, Eo SE, Anal. Methods, 9, 1384 (2017)
Zhang S, Wang J, Liu X, Qu F, Wang X, Wang X, Li Y, Sun Y, Trends Anal. Chem., 111, 62 (2019)
Yunker PJ, Still T, Lohr MA, Yodh AG, Nature, 476(7360), 308 (2011)
Ding T, Song K, Clays K, Tung CH, Adv. Mater., 21(19), 1936 (2009)
Wokaun A, Bergman J, Heritage J, Glass A, Liao P, Olson D, Phys. Rev. B, 24, 849 (1981)
Royer P, Bijeon JL, Goudonnet JP, Inagaki T, Arakawa ET, Surf. Sci., 217(1-2), 384 (1989)
Kim J, Kim JY, Kim Y, Lee SJ, Kim JM, Anal. Chem., 89, 8662 (2017)
Li J, Wei Y, Deng Y, Gu D, Yang X, Zhang L, Tu B, Zhao D, J. Mater. Chem., 20, 6460 (2010)
Li D, Wang Y, Plasmonic nanostructures as surfaceenhanced Raman scattering (SERS) substrate for protein biomarker sensing, InTech, London (2017).
Mazzoli A, Favoni O, Powder Technol., 225, 65 (2012)
Batchelor G, J. Fluid Mech., 46, 813 (1971)
Cha S, Shin T, Lee SS, Shim W, Lee G, Lee SJ, Kim Y, Kim JM, Anal. Chem., 84, 10471 (2012)
Bae YB, Jang HK, Shin TH, Phukan G, Tran TT, Lee G, Hwang WR, Kim JM, Lab Chip, 16, 96 (2016)
Xia Y, Whitesides GM, Annu. Rev. Mater. Sci., 28, 153 (1998)
Ahn SJ, Ahn KH, Lee SJ, Colloid Polym. Sci., 294, 859 (2016)
Jeffery GB, Proc. R. Soc. Lond., 102, 161 (1922)
Petrie CJS, J. Non-Newton. Fluid Mech., 87(2-3), 369 (1999)
Bird RB, Armstrong RC, Hassager O, Dynamics of polymeric fluids fluid mechanics, Wiley Interscience, New York (1987).
Rodd LE, Cooper-White JJ, Boger DV, McKinley GH, J. Non-Newton. Fluid Mech., 143(2-3), 170 (2007)
Rodd LE, Scott TP, Boger DV, Cooper-White JJ, McKinley GH, J. Non-Newton. Fluid Mech., 129(1), 1 (2005)
Ho B, Leal L, J. Fluid Mech., 76, 783 (1976)
Yang S, Kim JY, Lee SJ, Lee SS, Kim JM, Lab Chip, 11, 266 (2011)
Kim B, Kim JM, Biomicrofluidics, 10, 024111 (2016)
Leshansky AM, Bransky A, Korin N, Dinnar U, Phys. Rev. Lett., 98, 234501 (2007)
Tehrani MA, J. Rheol., 40(6), 1057 (1996)
Han M, Kim C, Kim M, Lee S, J. Rheol., 43(5), 1157 (1999)
Leighton D, Acrivos A, J. Fluid Mech., 181, 415 (1987)
Dylla-Spears R, Townsend JE, Jen-Jacobson L, Sohn LL, Muller SJ, Lab Chip, 10, 1543 (2010)
Schowalter WR, Luikov A, Minkowyc W, Progress in heat and mass transfer: Selected papers of the 1970 international seminar, Elsevier, New York (2013).
Guazzelli E, Morris JF, A physical introduction to suspension dynamics, Cambridge University Press, New York (2011).
Jahnke A, Arp HPH, Escher BI, Gewert B, Gorokhova E, Kuhnel D, Ogonowski M, Potthoff A, Rummel C, Schmitt-Jansen M, Environ. Sci. Technol. Lett., 4, 85 (2017)
Kim Y, Ahn KH, Lee SJ, J. Membr. Sci., 534, 25 (2017)
Kursun I, Min. Proc. Ext. Met. Rev., 30, 346 (2009)
Mora C, Kwan A, Ceme. Concr. Res., 30, 351 (2000)
Krumbein WC, J. Sediment. Res., 11, 64 (1941)
Olson E, J. GXP Compliance, 15, 85 (2011)
Gossett DR, Henry T, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao J, Clark AT, Di Carlo D, Proc. Natl. Acad. Sci. U.S.A., 109, 7630 (2012)