ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 16, 2020
Accepted July 27, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Synthesis of high-performance Ni/Ce0.8Zr0.2O2 catalyst via co-nanocasting method for ethanol dry reforming

School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
caiwj@dlpu.edu.cn
Korean Journal of Chemical Engineering, December 2020, 37(12), 2143-2151(9), 10.1007/s11814-020-0647-6
downloadDownload PDF

Abstract

A Ni/Ce0.8Zr0.2O2 catalyst (NiCeZr-N) was synthesized by a facile co-nanocasting technique for syngas production from ethanol dry reforming. In addition, a series of characterization techniques, such as transmission electron microscopy (TEM), X-ray diffraction (XRD), inductive coupled plasma Emission Spectrometer (ICP), X-ray photoelectron spectroscopy (XPS), Raman and hydrogen temperature programmed reduction (H2-TPR) were selected to evaluate the physicochemical features of the as-prepared catalysts. Indeed, the results indicated that NiCeZr-N catalyst prepared by co-nanocasting method had a smaller particle size (<5 nm), relatively higher specific surface area (39m2/g) and stronger metal-support interaction in comparison with another model catalyst obtained from conventional co-precipitation method (NiCeZr-P). Expectedly, these positive factors enabled NiCeZr-N catalyst to exhibit better activity and stability. Typically, ethanol is completely converted by using NiCeZr-N as catalyst and heating to 700 °C, and CO2 conversion was as high as 65.3%. Interestingly, H2/CO was close to 1.1 at 650 °C, which could be used as feedstocks of Fischer-Tropsch process. Particularly, no obvious fluctuation of ethanol conversion and the product selectivity was observed during 40 h time-on-stream stability test.

References

Bac S, Keskin S, Avci AK, Sust. Energy Fuels, 4, 1029 (2020)
Fayaz F, Bach LG, Bahari MB, Nguyen TD, Vu KB, Kanthasamy R, Samart C, Nguyen-Huy C, Vo DN, Int. J. Energy Res., 43, 405 (2018)
Kumar S, Mondal MK, Korean J. Chem. Eng., 37(2), 231 (2020)
Yu J, Odriozola JA, Reina TR, Catalysts, 9, 1015 (2019)
Ortiz AL, Samano RBP, Zaragoza MJM, Collins-Martinez V, Int. J. Hydrog. Energy, 40(48), 17172 (2015)
Zawadzki A, Bellido JDA, Lucredio AF, Assaf EM, Fuel Process. Technol., 128, 432 (2014)
Dang C, Wu S, Yang G, Cao Y, Wang H, Peng F, Yu H, J. Energy Chem., 43, 90 (2020)
Zhao S, Cai W, Li Y, Yu H, Zhang S, Cui L, J. Saudi Chem. Soc., 22, 58 (2018)
Drif A, Bion N, Brahmi R, Ojala S, Pirault-Roy L, Turpeinen E, Seelam PK, Keiski RL, Epron F, Appl. Catal. A: Gen., 504, 576 (2015)
le Sache E, Pastor-Perez L, Watson D, Sepulveda-Escribano A, Reina TR, Appl. Catal. B: Environ., 236, 458 (2018)
Jo S, Kim Y, Korean J. Chem. Eng., 11, 3203 (2016)
Bahari MB, Fayaz F, Ainirazali N, Phuc NHH, Vo DVN, Arpn J. Eng. Appl. Sci., 11, 7249 (2016)
Samsudeen K, Ahmed AF, Yahya M, Ahmed A, Anis F, Int. J. Res. Sci., 4, 5 (2018)
Zhang Q, Wang Z, Ning P, Zhang T, Wang M, Long K, Huang J, Korean J. Chem. Eng., 34(11), 2823 (2017)
Daoura O, Kaydouh MN, Ei-Hassan N, Massiani P, Launay F, Boutros M, J. CO2 Util., 24, 112 (2018)
Li HT, Qiu Y, Wang CZ, Huang X, Xiao TC, Zhao YX, Catal. Today, 317, 76 (2018)
Bej B, Bepari S, Pradhan NC, Neogi S, Catal. Today, 291, 58 (2017)
Li Z, Wamg Z, Jiang B, Kawi S, Catal. Sci. Technol., 8, 3363 (2018)
Wei YC, Cai WJ, Deng SJ, Li ZC, Yu H, Zhang SY, Yu ZH, Cui L, Qu FZ, Renew. Energy, 145, 1507 (2020)
Delahaye E, Escax V, El Hassan N, Davidson A, Aquino R, Dupuis V, Perzynski R, Raikher YL, J. Phys. Chem. B, 110(51), 26001 (2006)
Tang WX, Wu XF, Li SD, Shan X, Liu G, Chen YF, Appl. Catal. B: Environ., 162, 110 (2015)
Nair MM, Kaliagunine S, Kleitz F, ACS Catal., 4, 3837 (2014)
Huang B, Bartholomew CH, Woodfield BF, Microporous Mesoporous Mater., 183, 37 (2014)
Duan Q, Wang J, Ding C, Ding H, Guo S, Jia Y, Liu P, Zhang K, Fuel, 18, 112 (2017)
Valdes-Solis T, Marban G, Fuertes AB, Catal. Today, 116(3), 354 (2006)
de Sousa FF, de Sousa HSA, Oliveira AC, Junior MCC, Ayala AP, Barros EB, Viana BC, Filho JM, Oliveira AC, Int. J. Hydrog. Energy, 37(4), 3201 (2012)
Xu Tongkuan, Zou Jie, Tao Weitong, Zhang Shaoyin, Cui Li, Zeng Fanli, Wang Dazhi, Cai Weijie, Fuel, 183, 238 (2016)
Deshpande AS, Niederberger M, Microporous Mesoporous Mater., 101, 413 (2007)
Bulutoglu PS, Say Z, Bac S, Ozensoy E, Avci AK, Appl. Catal. A: Gen., 564, 157 (2018)
Guerrero-Caballero J, Kane T, Haidar N, Jalowiecki-Duhamel L, Lofberg A, Catal. Today, 333, 251 (2019)
Basile F, Mafessanti R, Fasolini A, Fornasari G, Lombardi E, Vaccari A, J. European Ceram. Soc., 39, 41 (2019)
Culity BD, Elements of X-ray diffraction, Addison-Wesley Metallurgy Series, Boston (1978).
Mcbride JR, Hass KC, Poindexter BD, Weber WH, J. Appl. Phys., 76, 2435 (1994)
Wang Y, Yao L, Wang Y, Wang S, Zhao Q, Mao D, Hu C, ACS Catal., 8, 6495 (2018)
Xu H, Sun M, Liu S, Li Y, Wang J, Chen Y, Rsc. Adv., 7, 24117 (2017)
Beche E, Charvin P, Perarnau D, Abanades S, Flamant G, Surf. Interface Anal., 40, 264 (2008)
Horvath A, Cai W, Homs N, Piscina PR, Appl. Catal. B: Environ., 150-151, 47 (2014)
Cai M, Wen J, Chu W, Cheng X, Li Z, J. Natural Gas Chem., 20, 318 (2011)
Anita H, Stefler G, Geszti O, Alain K, Agnieszka P, Laszlo G, Catal. Today, 169(1), 102 (2011)
Zonetti PC, Letichevsky S, Gaspar AB, Sousa-Aguiar EF, Appel LG, Appl. Catal. A: Gen., 475, 48 (2014)
Gao X, Liu G, Wei Q, Yang G, Masaki M, Peng X, Yang R, Tsubaki N, Int. J. Hydrog. Energy, 42, 26 (2017)
Wu YL, Zhao WJ, Li XH, Li WY, J. Fuel Chem. Technol., 5, 189 (2017)
Pawar V, Ray D, Subrahmanyam C, Janardhanan VM, Energy Fuels, 29(12), 8047 (2015)
Pimenta MA, Dresselhaus G, Dresslhaus MS, Cancado LG, Jorio A, Saito R, Phys. Chem. Chem. Phys., 9, 1276 (2007)
Hao Y, Wang Y, Wang L, Ni Z, Wang Z, Wang R, Koo CK, Shen Z, Thong JTL, Small, 6, 195 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로