Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 24, 2020
Accepted August 26, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
A functionalized nanocomposite adsorbent for the sequential removal of radioactive iodine and cobalt ions in aqueous media
Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea 1Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea 2Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, 45650, Pakistan 3School of Environmental Engineering, University of Seoul, Seoul 02504, Korea
jeonj@knu.ac.kr
Korean Journal of Chemical Engineering, December 2020, 37(12), 2209-2215(7), 10.1007/s11814-020-0668-1
Download PDF
Abstract
The need for efficient remediation of the radioactive waste caused by undesirable nuclear accidents and overspending of radionuclides has gained worldwide attention, with extensive recent efforts made to protect the environment from radioactive contamination. Although various treatment processes for the removal of radionuclides and the purification of liquid waste have been reported, the development of a better decontamination method is still necessary for obtaining enhanced desalination performances. Herein, we report a dual-functional composite adsorbent composed of a cellulose acetate membrane as a solid support, gold nanoparticles (AuNPs), and a metal chelating agent which can potentially be used to efficiently remove radioactive iodine and cobalt. In the desalination experiments, the sorption membrane was able to remove cobalt ions rapidly in water. Isotherm data shows that approximately 180 Co2+ atoms were captured per AuNP. Next, the same material was used for the adsorption of iodide anions. Within a few minutes, more than 99% of radioactive iodine was removed even in the presence of other ion species. These findings clearly demonstrate that the desalination method presented in here provides a useful approach for the sequential removal of toxic metal and halogen species in aqueous media.
References
Ramana MV, Wires Energy Environ., 7, e289 (2018)
International Atomic Energy Agency, IAEA/NSR (2019).
Khayet M, Matsuura T, Desalination, 321, 1 (2013)
Lerebours A, Gudkov D, Nagorskaya L, Kaglyan A, Rizewski V, et al., Environ. Sci. Technol., 52, 9942 (2018)
Fisher NS, Beaugelin-Seiller K, Hinton TG, Baumann Z, Madigan DJ, Garnier-Laplace J, Proc. Natl. Acad. Sci. U.S.A., 110, 10670 (2013)
Hou X, Povinec PP, Zhang L, Shi K, Biddulph D, Chang CC, et al., Environ. Sci. Technol., 47, 3091 (2013)
Ravichandran R, Management of radioactive wastes in a hospital environment, Springer, Publications, Singapore (2017).
Kontogeorgakos D, Tzika F, Stamatelatos IE, Nucl. Technol., 175, 435 (2017)
Luo DQ, Zhao SS, Tang YR, Wang QJ, Liu HJ, Ma SC, J. Anal. Methods Chem., 8, 1 (2018)
Joshi C, Dhanesar S, Darko J, Kerr A, Vidyasagar P, Schreiner L, J. Med. Phys., 34, 137 (2009)
Shim HE, Mushtaq S, Jeon J, J. Vis. Exp., 137, e58105 (2018)
Mushtaq S, Yun SJ, Yang JE, Jeong SW, Shim HE, Choi MH, Park SH, Choi YJ, Jeon J, Environ. Sci. Nano, 4, 2157 (2017)
Choi MH, Jeong SW, Shim HE, Yun SJ, Mushtaq S, Choi DS, Jang BS, Yang JE, Choi YJ, Jeon J, Chem. Commun., 53, 3937 (2017)
Choi MH, Shim HE, Yun SJ, Park SH, Choi DS, Jang BS, Choi YJ, Jeon J, ACS Appl. Mater. Interfaces, 8, 29227 (2016)
Ong Q, Luo Z, Stellacci F, Accounts Chem. Res., 50, 1911 (2017)
Elahi N, Kamali M, Baghersad MH, Talanta, 184, 537 (2018)
Kaushik M, Moores A, Green Chem., 18, 622 (2016)
Wegner SV, Spartz JP, Angew. Chem.-Int. Edit., 52, 7593 (2013)
Le TT, Wilde CP, Grossman N, Cass AEG, Phys. Chem. Chem. Phys., 13, 5271 (2011)
Hainfeld JF, Liu WQ, Halsey CMR, Freimuth P, Powell RD, J. Struct. Biol., 127(2), 185 (1999)
Khanal LR, Sundararajan JA, Qiang Y, Energy Technol., 8, 190107 (2020)
Yuan Y, Wang H, Hou S, Xia D, Wiley-VCH: Hoboken, Publications, USA (2018).
Zhang X, Liu Y, Environ. Sci. Nano, 7, 1008 (2020)
Song W, Wang X, Wang Q, Shao D, Wang X, Phys. Chem. Chem. Phys., 17, 398 (2015)
Mahmoud ME, Saad EA, Soliman MA, Abdelwahab MS, RSC Adv., 6, 66242 (2016)
Borai EH, Breky MME, Sayed MS, Abo-Aly MM, J. Colloid Interface Sci., 450, 17 (2015)
Yang D, Sarina S, Zhu H, Liu H, Zheng Z, Xie M, Smith SV, Komarneni S, Angew. Chem.-Int. Edit., 50, 10594 (2011)
Chen YY, Yu SH, Yao QZ, Fu SQ, Zhou GT, J. Colloid Interface Sci., 510, 280 (2018)
Attallah MF, Abd-Elhamid AI, Ahmed IM, Aly HF, J. Mol. Liq., 261, 379 (2018)
Xiao CL, Fard ZH, Sarma D, Song TB, Xu C, Kanatzidis MG, J. Am. Chem. Soc., 139(46), 16494 (2017)
Mahmoud ME, Allam EA, Saad EA, El-Khatib AM, Soliman MA, J. Polym. Environ., 27, 421 (2019)
International Atomic Energy Agency, IAEA/NSR (2019).
Khayet M, Matsuura T, Desalination, 321, 1 (2013)
Lerebours A, Gudkov D, Nagorskaya L, Kaglyan A, Rizewski V, et al., Environ. Sci. Technol., 52, 9942 (2018)
Fisher NS, Beaugelin-Seiller K, Hinton TG, Baumann Z, Madigan DJ, Garnier-Laplace J, Proc. Natl. Acad. Sci. U.S.A., 110, 10670 (2013)
Hou X, Povinec PP, Zhang L, Shi K, Biddulph D, Chang CC, et al., Environ. Sci. Technol., 47, 3091 (2013)
Ravichandran R, Management of radioactive wastes in a hospital environment, Springer, Publications, Singapore (2017).
Kontogeorgakos D, Tzika F, Stamatelatos IE, Nucl. Technol., 175, 435 (2017)
Luo DQ, Zhao SS, Tang YR, Wang QJ, Liu HJ, Ma SC, J. Anal. Methods Chem., 8, 1 (2018)
Joshi C, Dhanesar S, Darko J, Kerr A, Vidyasagar P, Schreiner L, J. Med. Phys., 34, 137 (2009)
Shim HE, Mushtaq S, Jeon J, J. Vis. Exp., 137, e58105 (2018)
Mushtaq S, Yun SJ, Yang JE, Jeong SW, Shim HE, Choi MH, Park SH, Choi YJ, Jeon J, Environ. Sci. Nano, 4, 2157 (2017)
Choi MH, Jeong SW, Shim HE, Yun SJ, Mushtaq S, Choi DS, Jang BS, Yang JE, Choi YJ, Jeon J, Chem. Commun., 53, 3937 (2017)
Choi MH, Shim HE, Yun SJ, Park SH, Choi DS, Jang BS, Choi YJ, Jeon J, ACS Appl. Mater. Interfaces, 8, 29227 (2016)
Ong Q, Luo Z, Stellacci F, Accounts Chem. Res., 50, 1911 (2017)
Elahi N, Kamali M, Baghersad MH, Talanta, 184, 537 (2018)
Kaushik M, Moores A, Green Chem., 18, 622 (2016)
Wegner SV, Spartz JP, Angew. Chem.-Int. Edit., 52, 7593 (2013)
Le TT, Wilde CP, Grossman N, Cass AEG, Phys. Chem. Chem. Phys., 13, 5271 (2011)
Hainfeld JF, Liu WQ, Halsey CMR, Freimuth P, Powell RD, J. Struct. Biol., 127(2), 185 (1999)
Khanal LR, Sundararajan JA, Qiang Y, Energy Technol., 8, 190107 (2020)
Yuan Y, Wang H, Hou S, Xia D, Wiley-VCH: Hoboken, Publications, USA (2018).
Zhang X, Liu Y, Environ. Sci. Nano, 7, 1008 (2020)
Song W, Wang X, Wang Q, Shao D, Wang X, Phys. Chem. Chem. Phys., 17, 398 (2015)
Mahmoud ME, Saad EA, Soliman MA, Abdelwahab MS, RSC Adv., 6, 66242 (2016)
Borai EH, Breky MME, Sayed MS, Abo-Aly MM, J. Colloid Interface Sci., 450, 17 (2015)
Yang D, Sarina S, Zhu H, Liu H, Zheng Z, Xie M, Smith SV, Komarneni S, Angew. Chem.-Int. Edit., 50, 10594 (2011)
Chen YY, Yu SH, Yao QZ, Fu SQ, Zhou GT, J. Colloid Interface Sci., 510, 280 (2018)
Attallah MF, Abd-Elhamid AI, Ahmed IM, Aly HF, J. Mol. Liq., 261, 379 (2018)
Xiao CL, Fard ZH, Sarma D, Song TB, Xu C, Kanatzidis MG, J. Am. Chem. Soc., 139(46), 16494 (2017)
Mahmoud ME, Allam EA, Saad EA, El-Khatib AM, Soliman MA, J. Polym. Environ., 27, 421 (2019)