ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 26, 2020
Accepted July 11, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Production of γ-aminobutyric acid from monosodium glutamate using Escherichia coli whole-cell biocatalysis with glutamate decarboxylase from Lactobacillus brevis KCTC 3498

1Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea 2Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Korea
seokor@konkuk.ac.kr
Korean Journal of Chemical Engineering, December 2020, 37(12), 2225-2231(7), 10.1007/s11814-020-0633-z
downloadDownload PDF

Abstract

γ-Aminobutyric acid (GABA), an important fine chemical in pharmacotherapy and food industries, is used as a novel material in the nylon industry and has attracted attention for its potential application in large scale production. Search for new genes and strains, development of efficient reaction systems, such as fermentation and bioconversion, and use of cheap starting material like monosodium glutamate (MSG) can make GABA production using less expensive bulk chemicals possible. Therefore, in this study, we constructed a recombinant Escherichia coli whole-cell system for GABA production that expressed glutamate decarboxylase (GAD) from Lactobacillus brevis and used MSG as the starting material. We also optimized the reaction conditions for MSG to GABA conversion, such as citrate buffer concentration, pyridoxal 5'-phosphate concentration, temperature, MSG concentration, and cell density (OD600). The optimized whole-cell system converted MSG to GABA via seven repetitive cycles resulting in an average conversion rate of 86% (71.7mM/h) within 42 h.

References

Ueno H, J. Mol. Catal. B-Enzym., 10, 67 (2000)
Baritugo KA, Kim HT, David Y, Khang TU, Hyun SM, Kang KH, Yu JH, Choi JH, Song JJ, Joo JC, Park SJ, Microb. Cell Fact., 17, 129 (2018)
Bhatia SK, Bhatia RK, Yang YH, Rev. Environ. Sci. Bio., 15, 639 (2016)
Choi JW, Yim SS, Lee SH, Kang TJ, Park SJ, Jeong KJ, Microb. Cell Fact., 14, 21 (2015)
Park SJ, Kim EY, Noh W, Oh YH, Kim HY, Song BK, Cho KM, Hong SH, Lee SH, Jegal J, Bioproc. Biosyst. Eng., 36, 885 (2013)
Hammond BJ, Balazs R, Machiyama Y, Julian T, Richter D, Biochem. J., 116, 445 (1970)
Sarasa SB, Mahendran R, Muthusamy G, Thankappan B, Selta DRF, Angayarkanni J, Curr. Microbiol., 77(4), 534 (2020)
Shi X, Chang C, Ma S, Cheng Y, Zhang J, Gao Q, J. Ind. Microbiol. Biotechnol., 44, 697 (2017)
Somkuti GA, Renye JA, Steinberg DH, J. Ind. Microbiol. Biotechnol., 39, 957 (2012)
Capitani G, Biase DD, Aurizi C, Gut H, Bossa F, Grutter MG, Embo J., 22, 4027 (2003)
Cui Y, Miao K, Niyaphorn S, Qu X, Int. J. Mol. Sci., 21, 995 (2020)
Li H, Cao Y, Amino Acids, 39, 1107 (2010)
Wang S, Chen P, Dang H, Lactic acid bacteria, Springer, Singapore (2019).
Li H, Qiu T, Huang G, Cao Y, Microb. Cell Fact., 9, 85 (2010)
Peng CL, Huang J, Hu S, Zhao WR, Yao SJ, Mei LH, Chin. J. Chem. Eng., 21(10), 1190 (2013)
Cho YR, Chang JY, Chang HC, J. Microbiol. Biotechnol., 17, 104 (2007)
Plokhov AY, Gusyatiner MM, Yampolskaya TA, Kaluzhsky VE, Sukhareva BS, Schulga AA, Appl. Biochem. Biotechnol., 88(1-3), 257 (2000)
Ke C, Yang X, Rao H, Zeng W, Hu M, Tao Y, Huang J, Springerplus, 5, 591 (2016)
Jeong A, Yong CC, Oh S, J. Microbiol. Biotechnol., 29, 1745 (2019)
Park KB, Oh SH, Bioresour. Technol., 98(2), 312 (2007)
Shan Y, Man CX, Han X, Li L, Guo Y, Deng Y, Li T, Zhang LW, Jiang YJ, Int. J. Dairy Sci., 98, 2138 (2015)
Tamura T, Noda M, Ozaki M, Maruyama M, Matoba Y, Kumagai T, Sugiyama M, Biol. Pharm. Bull., 33, 1673 (2010)
Villegas JM, Brown L, Giori GSD, Hebert EM, LWT.-Food Sci. Technol., 67, 22 (2016)
Becker J, Wittmann C, Int. Ed., 54, 3328 (2015)
Dong L, Li Y, Wang P, Feng Z, Ding N, J. Clean Prod., 190, 452 (2018)
Straathof AJJ, Chem Rev., 114, 1871 (2014)
Merory, J. Food flavorings: Composition, manufacture, and use, 2 Ed., Avi Publishing Co., Westport, Conn (1968).
Yalkowsky SH, He Y, Jain P, Handbook of aqueous solubility data, 2nd Ed., CRC Press., Boca Raton (2010).
Bhatia SK, Kim YH, Kim HJ, Seo HM, Kim JH, Song HS, Sathiyanarayanan G, Park SH, Park K, Yang YH, Bioproc. Biosyst. Eng., 38, 2315 (2015)
Hong YG, Moon YM, Hong JW, No SY, Choi TR, Jung HR, Yang SY, Bhatia SK, Ahn JO, Park KM, Yang YH, Enzyme Microb. Technol., 118, 57 (2018)
Kim J, Seo HM, Bhatia SK, Song HS, Kim JH, Jeon JM, et al., Sci. Rep., 7, 39768 (2017)
Lin B, Tao Y, Microb. Cell Fact., 16, 106 (2017)
Moon YM, Gurav R, Kim J, Hong YG, Bhatia SK, Jung HR, et al., Biotechnol. Bioproc. E, 23, 442 (2018)
Kim YH, Kim HJ, Shin JH, Bhatia SK, Seo HM, J. Mol. Catal. B-Enzym., 115, 151 (2015)
Zhang Y, Song L, Gao Q, Yu SM, Li L, Gao NF, Appl. Microbiol. Biotechnol., 94(6), 1619 (2012)
Lyu C, Zhao W, Peng C, Hu S, Fang H, Hua Y, Yao S, Huang J, Mei L, Microb. Cell Fact., 17, 180 (2018)
Eichelman B, Psychiat. Serv., 39, 31 (1988)
Diana M, Quilez J, Rafecas M, J. Funct. Foods, 10, 407 (2014)
Frieder A, Fersh M, Hainline R, Deligiannidis KM, Cns Drugs, 33, 265 (2019)
Fan LQ, Li MW, Qiu YJ, Chen QM, Jiang SJ, Shang YJ, Zhao LM, J. Biotechnol., 278, 1 (2018)
Kim JH, Seo HM, Sathiyanarayanan G, Bhatia SK, Song HS, Kim J, Jeon JM, Yoon JJ, Kim YG, Park K, Yang YH, J. Ind. Eng. Chem., 46, 44 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로