ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 9, 2020
Accepted August 27, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

The effects of temperature and membrane thickness on the performance of aqueous alkaline redox flow batteries using napthoquinone and ferrocyanide as redox couple

1Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea 2Gwangju Research Center, Korea Institute of Industrial Technology, Gwangju 61012, Korea 3Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
drchang@kitech.re.kr
Korean Journal of Chemical Engineering, December 2020, 37(12), 2326-2333(8), 10.1007/s11814-020-0669-0
downloadDownload PDF

Abstract

The mixture of naphthoquinone-4-sulfonic acid sodium salt and 2-hydroxy-naphthoquinone (NQSO) and ferrocyanide dissolved in potassium hydroxide (KOH) electrolyte was used as catholyte and anolyte, respectively. We evaluated the effects of temperature and membrane thickness on the performance of aqueous organic redox flow batteries (AORFB) using the NQSO and ferrocyanide dissolved in alkaline electrolyte. Regarding temperature effect, when the electrochemical properties of NQSO and ferrocyanide are evaluated with 25 and 40 °C, their redox reactivity is enhanced with increased temperature due to the proportional relation of reaction rate and temperature. In addition, their electron transfer rate is also improved with increased temperature due to the proportional relation of electron transfer rate and temperature. These are proven by Nyquist plots showing the reciprocal relationship of resistance and temperature. In AORFB full cell tests performed at 25 and 40 °C, although capacity decay rate observed at 40 °C (0.067 Ah·L.1 per cycle) is larger than that observed at 25 °C (0.034Ah.L.1 per cycle), energy efficiency (EE) was improved from 86% at 25 °C to 89% at 40 °C. Regarding membrane thickness effect, the performance of AORFB using thin Nafion 212 membrane is better than that of AORFBs using thick Nafion 117 and Nafion 1110 membranes in voltage efficiency (VE) and EE, while its capacity retention is vice versa. This is because thinner membrane induces lower resistance.

References

Benitez LE, Benitez PC, Van Kooten GC, Energy Econ., 30, 1973 (2008)
Amiryar ME, Pullen KR, Appl. Sci., 7, 286 (2017)
Bortolini M, Gamberi M, Graziani A, Energy Conv. Manag., 86, 81 (2014)
Hu XS, Johannesson L, Murgovski N, Egardt B, Appl. Energy, 137, 913 (2015)
Doucette RT, McCulloch MD, J. Power Sources, 196(3), 1163 (2011)
Lim JE, Kim JK, Korean J. Chem. Eng., 35(12), 2464 (2018)
Andika R, Kim Y, Yun CM, Yoon SH, Lee MY, Korean J. Chem. Eng., 36(1), 12 (2019)
Lee S, Gendensuren B, Kim BY, Jeon SI, Cho YH, Kim TW, Oh ES, Korean J. Chem. Eng., 36(11), 1940 (2019)
Kim JH, Jun SA, Kwon Y, Ha S, Sang BI, Kim J, Bioelectrochemistry, 101, 114 (2015)
Hyun K, Han SW, Koh WG, Kwon Y, Int. J. Hydrog. Energy, 40(5), 2199 (2015)
Hyun KH, Han SW, Koh WG, Kwon Y, J. Power Sources, 286, 197 (2015)
Christwardana M, Kwon Y, J. Power Sources, 299, 604 (2015)
Chung Y, Hyun KH, Kwon Y, Nanoscale, 8, 1161 (2016)
Chung Y, Ahn Y, Christwardana M, Kim H, Kwon Y, Nanoscale, 8, 9201 (2016)
Christwardana M, Kim KJ, Kwon Y, Sci. Rep., 6, 1 (2016)
Mahmood N, Zhang C, Yin H, Hou Y, J. Mater. Chem. A, 2, 15 (2014)
Thackeray MM, Wolverton C, Isaacs ED, Energy Environ. Sci., 5, 7854 (2012)
Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J, Nano Energy, 33, 363 (2017)
Ko HS, Park HW, Kim GJ, Lee JD, Korean J. Chem. Eng., 36(4), 620 (2019)
Lim WG, Jo CS, Lee JW, Hwang DS, Korean J. Chem. Eng., 35(2), 579 (2018)
Hassoun J, Panero S, Reale P, Scrosati B, Adv. Mater., 21(47), 4807 (2009)
Masih-Tehrani M, Ha'iri-Yazdi MR, Esfahanian V, Safaei A, J. Power Sources, 244, 2 (2013)
Leung P, Li X, De Leon CP, Berlouis L, Low CJ, Walsh FC, Rsc Adv., 2, 10125 (2012)
Winsberg J, Hagemann T, Janoschka T, Hager MD, Schubert US, Angew. Chem.-Int. Edit., 56, 686 (2017)
Bartolozzi M, J. Power Sources, 27, 219 (1989)
Chalamala BR, Soundappan T, Fisher GR, Anstey MR, Viswanathan VV, Perry ML, Proc. IEEE, 102, 976 (2014)
Sasaki T, Kadoya T, Enomoto K, IEEE Trans. Power Syst., 19, 660 (2004)
Pan F, Wang Q, Molecules, 20, 20499 (2015)
Zhou XL, Zhao TS, An L, Zeng YK, Wei L, J. Power Sources, 339, 1 (2017)
Chakrabarti MH, Mjalli FS, AlNashef IM, Hashim MA, Hussain MA, Bahadori L, Low CTJ, Renew. Sust. Energ. Rev., 30, 254 (2014)
Lee W, Kwon BW, Jung M, Serhiichuk D, Henkensmeier D, Kwon Y, J. Power Sources, 439, 227079 (2019)
Lopez-Atalaya M, Codina G, Perez JR, Vazquez JL, Aldaz A, J. Power Sources, 39, 147 (1992)
Jeon JD, Yang HS, Shim J, Kim HS, Yang JH, Electrochim. Acta, 127, 397 (2014)
Yang JH, Yang HS, Ra HW, Shim J, Jeon JD, J. Power Sources, 275, 294 (2015)
Kim KJ, Park MS, Kim YJ, Kim JH, Dou SX, Skyllas-Kazacos M, J. Mater. Chem. A, 3, 16913 (2015)
Zeng YK, Zhao TS, An L, Zhou XL, Wei L, J. Power Sources, 300, 438 (2015)
Jeong S, Kim LH, Kwon Y, Kim S, Korean J. Chem. Eng., 31(11), 2081 (2014)
Luo XL, Lu ZZ, Xi JY, Wu ZH, Zhu WT, Chen LQ, Qiu XP, J. Phys. Chem. B, 109(43), 20310 (2005)
Jung M, Lee W, Krishnan NN, Kim S, Gupta G, Komsiyska L, Harms C, Kwon Y, Henkensmeier D, Appl. Surf. Sci., 450, 301 (2018)
Zhou XL, Zhao TS, An L, Wei L, Zhang C, Electrochim. Acta, 153, 492 (2015)
Lee W, Jung M, Serhiichuk D, Gupta G, Harms C, Kwon Y, Henkensmeier D, J. Membr. Sci., 591, 117333 (2019)
Leung PK, Xu Q, Zhao TS, Zeng L, Zhang C, Electrochim. Acta, 105, 584 (2013)
Xu Q, Zhao TS, Leung PK, Appl. Energy, 105, 47 (2013)
Li W, Liu J, Yan C, Carbon, 49, 3463 (2011)
Wang S, Zhao X, Cochell T, Manthiram A, J. Phys. Chem. Lett., 3, 2164 (2012)
Tang Z, Aaron DS, Papandrew AB, Zawodzinski TA, ECS Trans., 41, 1 (2012)
Jeong S, An S, Jeong J, Lee J, Kwon Y, J. Power Sources, 278, 245 (2015)
Ryu J, Park M, Cho J, J. Electrochem. Soc., 163, A51444 (2015)
Hien PTT, Jo C, Lee J, Kwon Y, RSC Adv., 6, 17574 (2016)
Park M, Ryu J, Cho J, Chem. Asian J., 10, 2096 (2015)
Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 187 (2018)
Noh C, Kwon BW, Chung Y, Kwon Y, J. Power Sources, 438, 227063 (2019)
Noh C, Kwon BW, Chung Y, Kwon Y, J. Power Sources, 406, 26 (2018)
Noh C, Lee CS, Chi WS, Chung Y, Kim JH, Kwon Y, J. Electrochem. Soc., 165(7), A1388 (2018)
Winsberg J, Hagemann T, Janoschka T, Hager MD, Schubert US, Angew. Chem.-Int. Edit., 56, 686 (2017)
Leung P, Shah AA, Sanz L, Flox C, Morante JR, Xu Q, Mohamed MR, de Leon CP, Walsh FC, J. Power Sources, 360, 243 (2017)
Lee W, Kwon BW, Kwon Y, ACS Appl. Mater. Interfaces, 10, 36882 (2018)
Wang W, Xu W, Cosimbescu L, Choi D, Li L, Yang Z, Chem. Commun., 48, 6669 (2012)
Kim HS, Lee KJ, Han YK, Ryu JH, Oh SM, J. Power Sources, 348, 264 (2017)
Wang W, Sprenkle V, Nat. Chem., 8, 204 (2016)
Armstrong CG, Toghill KE, Electrochem. Commun., 91, 19 (2018)
Shin M, Noh C, Chung Y, Kwon Y, Chem. Eng. J., 398, 125631 (2020)
Noh C, Chung Y, Kwon Y, J. Power Sources, 466, 228333 (2020)
Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, Chen XD, Aspuru-Guzik A, Gordon RG, Aziz MJ, Nature, 505(7482), 195 (2014)
Yang B, Hoober-Burkhardt L, Wang F, Prakash GKS, Narayanan SR, J. Electrochem. Soc., 161(9), A1371 (2014)
Chu CH, Kwon BW, Lee WM, Kwon YC, Korean J. Chem. Eng., 36(10), 1732 (2019)
Lin K, Chen Q, Gerhardt MR, Tong L, Kim SB, Eisenach L, Valle AW, Hardee D, Gordon RG, Aziz MJ, Marshak MP, Science, 319, 1529 (2015)
Lee W, Park G, Kwon Y, Chem. Eng. J., 386, 123985 (2020)
Kwabi DG, Lin K, Ji Y, Kerr EF, Goulet MA, et al., Joule, 2, 1894 (2018)
Lin K, Gomez-Bombarelli R, Beh ES, Tong L, Chen Q, Valle A, Aspuru-Guzik A, Aziz MJ, Gordon RG, Nat. Energy, 1, 1 (2016)
Lee W, Permatasari A, Kwon BW, Kwon Y, Chem. Eng. J., 358, 1438 (2019)
Wei XL, Xu W, Vijayakumar M, Cosimbescu L, Liu TB, Sprenkle V, Wang W, Adv. Mater., 26(45), 7649 (2014)
Lee W, Permatasari A, Kwon Y, J. Mater. Chem. C, 8, 5727 (2020)
Luo J, Hu B, Debruler C, Liu TL, Angew. Chem.-Int. Edit., 57, 231 (2018)
Schwaab M, Pinto JC, Chem. Eng. Sci., 62(10), 2750 (2007)
Renger G, Christen G, Karge M, Eckert HJ, Irrgang KD, J. Biol. Inorg. Chem., 3, 360 (1998)
Hess K, Morkoc H, Shichijo H, Streetman BG, Appl. Phys. Lett., 35, 469 (1979)
Wang X, Hu JM, Hsing IM, J. Electroanal. Chem., 562(1), 73 (2004)
Lee K, Nam JD, J. Power Sources, 157(1), 201 (2006)
Kingdon JB, Ferland GJ, Astrophys. J. Suppl. Ser., 106, 205 (1996)
Bonvalet JP, de Rouffignac C, J. Physiol., 318, 85 (1981)
Wasielewski MR, Niemczyk MP, Svec WA, Pewitt EB, J. Am. Chem. Soc., 107, 1080 (1985)
Tsampas MN, Pikos A, Brosda S, Katsaounis A, Vayenas CG, Electrochim. Acta, 51(13), 2743 (2006)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로