ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 11, 2020
Accepted November 2, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Free-standing Ag nanoparticle-decorated MoS2 microflowers grown on carbon cloth for photocatalytic oxidation of Rhodamine B

School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea 1Department of Environment and Energy Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea
kdhh@chonnam.ac.kr
Korean Journal of Chemical Engineering, December 2020, 37(12), 2359-2367(9), 10.1007/s11814-020-0705-0
downloadDownload PDF

Abstract

MoS2 microflowers were grown on the surface of a carbon cloth (CC) via a one-step hydrothermal method. Sodium borohydride was used to chemically reduce Ag nanoparticles on the surface of the as-grown MoS2 microflowers. The Ag nanoparticle-decorated MoS2 microflowers grown on the CC (Ag@MoS2/CC) were used for the photocatalytic degradation of rhodamine B (RB) via visible light absorption. The Ag nanoparticles significantly affected the reactivity of the photocatalyst by generating a large number of oxidative radical species. The catalytic reaction followed first-order kinetics and the rate of degradation improved by about 3.3 times upon the deposition of Ag nanoparticles on the surface. Scavenger experiments showed that the hydroxyl radicals generated by the photogenerated electrons were the main contributing species in the degradation of RB. The catalytic mechanism involved efficient electron transfer from the conduction band of MoS2 to Ag through a space charge region, making the surface of the photocatalyst highly electron populated. The fabricated catalyst was highly stable for multiple experiments.

References

Chang J, Zhang L, Wang P, Environ. Sci. Nano, 5, 811 (2018)
Li H, Li J, Thomas A, Liao Y, Adv. Funct. Mater., 29, 190478 (2019)
Tho NTM, Huy BT, Khank DNN, Ha HNN, Huy VQ, Vy NTT, Huy DM, Dat DP, Phuong NTK, Korean J. Chem. Eng., 35(12), 2442 (2018)
Li T, Sun T, Aftab TB, Li D, Korean J. Chem. Eng., 34(4), 1199 (2017)
Barakat MAEF, Kumar R, Al-Makishah NH, Neamtallah AA, Alafif ZO, Korean J. Chem. Eng., 36(8), 1281 (2019)
Li W, Wang L, Zhang Q, Chen Z, Deng X, Feng C, Xu L, Sun M, J. Alloy. Compd., 808, 151681 (2019)
Cui Y, Yang L, Meng M, Zhang Q, Li B, Wu Y, Zhang Y, Lang J, Li C, Korean J. Chem. Eng., 36(2), 236 (2019)
Lee SS, Huy BT, Phuong NTK, Tung DK, Lee YI, Korean J. Chem. Eng., 36(10), 1716 (2019)
Peleyeju MG, Arotiba OA, Environ. Sci. Water Res. Technol., 4, 1389 (2018)
Qiu K, Zhou JS, Qi P, Zhou Q, Gao X, Luo Z, Korean J. Chem. Eng., 34(9), 2383 (2017)
Han S, Chae GS, Lee JS, Korean J. Chem. Eng., 33(6), 1799 (2016)
Zheng X, Li D, Li X, Yu L, Wang P, Zhang X, Fang J, Shao Y, Zheng Y, Phys. Chem. Chem. Phys., 16, 15299 (2014)
Ding C, Shi J, Wang Z, Li C, ACS Catal., 7, 675 (2017)
Mutalib MA, Aziz F, Jamaludin NA, Yahya N, Ismail AF, Mohamed MA, Yusop MZM, Salleh WNW, Jaafar J, Yusof N, Korean J. Chem. Eng., 35(2), 548 (2018)
Liu XQ, Zhou ZP, Lu Y, Wang T, Huo PW, Yan YS, Adv. Powder Technol., 30(5), 1043 (2019)
Robatjazi H, Bahauddin SM, Doiron C, Thomann I, Nano Lett., 15, 6155 (2015)
Wang W, Tade MO, Shao Z, Chem. Soc. Revs., 44, 5371 (2015)
Cho YS, LEe HJ, Sung SH, Korean J. Chem. Eng., 37(6), 1071 (2020)
Isleyen M, Ilkme ES, Soylu GSP, Korean J. Chem. Eng., 34(6), 1786 (2017)
Wang H, Li C, Fang P, Zhang Z, Zhang JZ, Chem. Soc. Rev., 47, 6101 (2018)
Khan B, Raziq F, Faheem MB, Farooq MU, Hussain S, et al.,, J. Hazard. Mater., 381, 120972 (2019)
Song HY, Wei LS, Chen CX, Wen CC, Han FQ, J. Catal., 376, 198 (2019)
Huang L, Ai LH, Wang M, Jiang J, Wang SB, Int. J. Hydrog. Energy, 44(2), 965 (2019)
Lejbini MB, Sangpour P, Optik, 177, 112 (2019)
Jia S, Xu M, Chen S, Yan J, Yun J, Deng Z, Zhang Z, Zhao W, Wang Y, Ma X, Mater. Lett., 236, 697 (2019)
Kang Y, Gong Y, Hu Z, Li Z, Qiu Z, Zhu X, Ajayan PM, Fang Z, Nanoscale, 7, 4482 (2015)
Wang H, Naghadeh SB, Li C, Ying L, Allen AL, Zhang JZ, Sci. China Mater., 61, 839 (2018)
Olvera-Rodriguez I, Hernandez R, Medel A, Guzman C, Escobar-Alarcon L, Brillas E, Sires I, Esquivel K, Sep. Purif. Technol., 224, 189 (2019)
Zheng H, Niu P, Zhao Z, RSC Adv., 7, 26943 (2017)
Jeon EH, Yang S, KimY, Kim N, Shin HJ, Baik J, Kim HS, Lee H, Nanoscale Res. Lett., 10, 361 (2015)
Chen HJ, Yang YL, Hong M, Chen JG, Suo GQ, Hou XJ, Feng L, Chen ZG, Sustain. Mater. Techno., 21, e00105 (2019)
Luo L, Shen X, Song L, Zhang Y, Zhu B, Liu J, Chen Q, Chen Z, Zhang L, J. Alloy. Compd., 779, 599 (2019)
Li XW, Sun YJ, Xiong T, Jiang GM, Zhang YX, Wu ZB, Dong F, J. Catal., 352, 102 (2017)
Kwon DY, Kim JS, Korean J. Chem. Eng., 37(7), 1226 (2020)
Cheah AJ, Chiu WS, Khiew PS, Nakajima H, Saisopa T, Songsiriritthigul P, Radiman S, Hamid MAA, Catal. Sci. Technol., 5, 4133 (2015)
Li M, Cui Z, Li E, Ceram. Int., 45, 14449 (2019)
Adhikari S, Lee HH, Kim DH, Chem. Eng. J., 391, 123504 (2020)
Cao J, Zhou J, Zhang Y, Liu X, Sci. Reps., 7, 8825 (2017)
Liu H, Chen XJ, Deng L, Su X, Guo K, Zhu ZF, Electrochim. Acta, 206, 184 (2016)
Adhikari S, Banerjee A, Eswar NK, Sarkar D, Madras G, RSC Adv., 5, 51067 (2015)
Bai X, Du YY, Hu XY, He YD, He CL, Liu EZ, Fan J, Appl. Catal. B: Environ., 239, 204 (2018)
Jung HR, Kim KN, Lee WJ, Korean J. Chem. Eng., 36(5), 807 (2019)
Wang J, Guan Z, Huang J, Li Q, Yang J, J. Mater. Chem. A, 2, 7960 (2014)
Ali A, Mangrio FA, Chen X, Dai Y, Chen K, Xu X, Xia R, Zhu L, Nanoscale, 11, 7813 (2019)
Feilizadeh M, Attar F, Mahinpey N, Can. J. Chem. Eng., 97, 2009 (2019)
Qiao XQ, Zhang ZW, Tian FY, Hou DF, Tian ZF, Li DS, Zhang Q, Cryst. Growth Des., 17, 3538 (2017)
Yang L, An Y, Dai B, Guo X, Liu Z, Peng B, Korean J. Chem. Eng., 34(2), 476 (2017)
Wang J, Zhou Q, Lu Z, Wei Z, Zeng W, Appl. Surf. Sci., 124, 490 (2019)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로