Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 30, 2019
Accepted November 5, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Selective oxidation of 5-formyloxymethylfurfural to 2, 5-furandicarboxylic acid with Ru/C in water solution
1Xiamen Key Laboratory of Clean and High-valued Applications of Biomass, College of Energy, Xiamen University, Xiamen 361102, China 2Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen University, Xiamen 361102, China
Korean Journal of Chemical Engineering, February 2020, 37(2), 224-230(7), 10.1007/s11814-019-0422-8
Download PDF
Abstract
2, 5-furandicarboxylic acid (FDCA) is a one of the most promising biomass-derived chemicals to substitute the non-renewable terephthalic acid as the monomer for producing polyethyleneterephthalate. At present, the oxidation of HMF is regarded as a prevalent way to prepare FDCA. Nevertheless, the isolation and storage of HMF is still a challenge. Herein, based on the higher stability of 5-formyloxymethylfurfural (FMF) than 5-hydroxymethylfurfural (HMF), we present an effective preparation route to prepare FDCA by substituting HMF with FMF as feedstock. A complete conversion of FMF and a 93.55% selectivity of FDCA were obtained in the mixed solvent of water and 1, 2- dioxane using Ru/C as catalyst and O2 as oxidant. An improved process was developed for preparing FDCA using FMF as feedstock. The investigation of conversion pathway showed that FMF and HMF were simultaneously oxidized to 2, 5-diformylfuran (DFF) in a case of the existence of the reversible equilibrium between FMF and HMF. Then DFF was oxidized to 5-formyl-2-furancarboxylic acid (FFCA). Subsequently, FFCA was oxidized to FDCA. In this process, the oxidation of FFCA to FDCA was determined as the rate-determining step. Furthermore, appropriate alkalinity favored the selectivity of FDCA and the conversion of FMF.
References
Ren Y, Yuan Z, Lv K, Sun J, Zhang Z, Chi Q, Green Chem., 20, 4946 (2018)
Andreessen C, Steinbuchel A, Appl. Microbiol. Biotechnol., 103(1), 143 (2019)
Han X, Li C, Liu X, Xia Q, Wang Y, Green Chem., 19, 996 (2017)
Hu L, He AY, Liu XY, Xia J, Xu JX, Zhou SY, Xu JM, Acs Sustain. Chem. Eng., 6, 15915 (2018)
Casanova O, Iborra S, Corma A, J. Catal., 265(1), 109 (2009)
Goudriaan F, Peferoen DGR, Chem. Eng. Sci., 45, 2729 (1990)
Mascal M, Nikitin EB, Green Chem., 12, 370 (2010)
Ohyama J, Esaki A, Yamamoto Y, Arai S, Satsuma A, RSC Adv., 3, 1033 (2013)
Nocito F, Ventura M, Aresta M, Dibenedetto A, ACS Omega, 3, 18724 (2018)
Han X, Geng L, Guo Y, Jia R, Liu X, Zhang Y, Wang Y, Green Chem., 18, 1597 (2016)
Wang S, Zhang Z, Liu B, Acs Sustain. Chem. Eng., 3, 406 (2015)
Zhou XH, Song KH, Li ZH, Kang WM, Ren HR, Su KM, Zhang ML, Cheng BW, Ceram. Int., 45, 2330 (2019)
Hayashi E, Komanoya T, Kamata K, Hara M, ChemSusChem, 10, 654 (2017)
Cai J, Ma H, Zhang J, Song Q, Du Z, Huang Y, Xu J, Chem. Eur. J., 19, 14215 (2013)
Zhou C, Deng W, Wan X, Zhang Q, Yang Y, Wang Y, Chemcatchem, 7, 2853 (2015)
Gorbanev YY, Kegnæs S, Riisager A, Top. Catal., 54, 1318 (2011)
Jiang YT, Chen W, Sun Y, Li Z, Tang X, Zeng XH, Lin L, Liu SJ, Ind. Crop. Prod., 83, 408 (2016)
Xiong C, Sun Y, Du J, Chen W, Si Z, Gao H, Tang X, Zeng X, Korean J. Chem. Eng., 35(6), 1312 (2018)
Tian Q, Fu B, J. Comparative Chemistry, 02, 23 (2018)
Antonyraj CA, Huynh NTT, Lee KW, Kim YJ, Shin S, Shin JS, Cho JK, J. Chem. Sci., 130, 156 (2018)
Gupta NK, Nishimura S, Takagaki A, Ebitani K, Green Chem., 13, 824 (2011)
Zheng L, Zhao J, Du Z, Zong B, Liu H, Sci. China Chem., 60, 950 (2017)
Gao LC, Deng KJ, Zheng JD, Liu B, Zhang ZH, Chem. Eng. J., 270, 444 (2015)
Zhang L, Luo X, Li Y, J. Energy Chem., 27, 243 (2018)
Andreessen C, Steinbuchel A, Appl. Microbiol. Biotechnol., 103(1), 143 (2019)
Han X, Li C, Liu X, Xia Q, Wang Y, Green Chem., 19, 996 (2017)
Hu L, He AY, Liu XY, Xia J, Xu JX, Zhou SY, Xu JM, Acs Sustain. Chem. Eng., 6, 15915 (2018)
Casanova O, Iborra S, Corma A, J. Catal., 265(1), 109 (2009)
Goudriaan F, Peferoen DGR, Chem. Eng. Sci., 45, 2729 (1990)
Mascal M, Nikitin EB, Green Chem., 12, 370 (2010)
Ohyama J, Esaki A, Yamamoto Y, Arai S, Satsuma A, RSC Adv., 3, 1033 (2013)
Nocito F, Ventura M, Aresta M, Dibenedetto A, ACS Omega, 3, 18724 (2018)
Han X, Geng L, Guo Y, Jia R, Liu X, Zhang Y, Wang Y, Green Chem., 18, 1597 (2016)
Wang S, Zhang Z, Liu B, Acs Sustain. Chem. Eng., 3, 406 (2015)
Zhou XH, Song KH, Li ZH, Kang WM, Ren HR, Su KM, Zhang ML, Cheng BW, Ceram. Int., 45, 2330 (2019)
Hayashi E, Komanoya T, Kamata K, Hara M, ChemSusChem, 10, 654 (2017)
Cai J, Ma H, Zhang J, Song Q, Du Z, Huang Y, Xu J, Chem. Eur. J., 19, 14215 (2013)
Zhou C, Deng W, Wan X, Zhang Q, Yang Y, Wang Y, Chemcatchem, 7, 2853 (2015)
Gorbanev YY, Kegnæs S, Riisager A, Top. Catal., 54, 1318 (2011)
Jiang YT, Chen W, Sun Y, Li Z, Tang X, Zeng XH, Lin L, Liu SJ, Ind. Crop. Prod., 83, 408 (2016)
Xiong C, Sun Y, Du J, Chen W, Si Z, Gao H, Tang X, Zeng X, Korean J. Chem. Eng., 35(6), 1312 (2018)
Tian Q, Fu B, J. Comparative Chemistry, 02, 23 (2018)
Antonyraj CA, Huynh NTT, Lee KW, Kim YJ, Shin S, Shin JS, Cho JK, J. Chem. Sci., 130, 156 (2018)
Gupta NK, Nishimura S, Takagaki A, Ebitani K, Green Chem., 13, 824 (2011)
Zheng L, Zhao J, Du Z, Zong B, Liu H, Sci. China Chem., 60, 950 (2017)
Gao LC, Deng KJ, Zheng JD, Liu B, Zhang ZH, Chem. Eng. J., 270, 444 (2015)
Zhang L, Luo X, Li Y, J. Energy Chem., 27, 243 (2018)