ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 12, 2019
Accepted November 24, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Measurement and correlation of phase equilibria in aqueous two-phase systems containing ionic liquid ([EOMiM]Br) and potassium citrate/ammonium citrate/potassium tartrate at different temperatures

1Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, China 2Jilin Provincial Key Laboratory for Numerical Simulation, Jilin Normal University, 1301 Haifeng Street, Siping, 136000, China
Korean Journal of Chemical Engineering, February 2020, 37(2), 332-340(9), 10.1007/s11814-019-0439-z
downloadDownload PDF

Abstract

An aqueous two-phase system (ATPS) containing an ionic liquid (1-(2-methoxyethyl)-3-methylimidazolium bromide) and three organic salts (K3C6H5O7, (NH4)3C6H5O7, and K2C4H4O6) at different temperatures was designed. Binodal data were correlated using two empirical equations, and tie-line data were fit with the utilization of Bancroft and Othmer-Tobias equations. In the systems investigated, three conclusions were drawn from the study of the phase-forming ability of salt through effective excluded volume, Gibbs free energy of ions, and the phase diagram. First, if the same cations of salt were present, the ability of salt to form phases increased with increasing valence of the anion. Second, the larger the effective excluded volume, the stronger the aforementioned ability of salt in forming phases. Third, salt had more ability to form phases if cations (or anions) contained in the salt possessed higher negative Gibbs free energy when the cation (anion) of the salt was the same. The effect of temperature on ATPSs was also investigated. It was found that it was easier to form ATPSs at lower temperature, and the tie-line slope showed growing absolute values as the temperature was decreased.

References

Bulgariu L, Bulgariu D, Sep. Purif. Technol., 80(3), 620 (2011)
Li H, Cao XJ, Process Biochem., 46(9), 1753 (2011)
Li ZG, Teng H, Xiu ZL, Process Biochem., 46(2), 586 (2011)
Lu YM, Lu WJ, Wang W, Guo QW, Yang YZ, Talanta, 85, 1621 (2011)
Salabat A, Sadeghi R, Moghadam ST, Jamehbozorg B, J. Chem. Thermodyn., 43(10), 1525 (2011)
Furuya T, Iwai Y, Tanaka Y, Uchida H, Yamada S, Arai Y, Fluid Phase Equilib., 103(1), 119 (1995)
Grossmann C, Tintinger R, Zhu J, Maurer G, Fluid Phase Equilib., 106(1-2), 111 (1995)
de Souza EC, Diniz RS, Coimbra JSD, Leite MD, dos Santos GR, Rodrigues AMD, da Silva LHM, J. Chem. Eng. Data, 58(7), 2008 (2013)
Diniz RS, Souza EC, Coimbra JSR, de Oliveira EB, da Costa AR, J. Chem. Eng. Data, 57(2), 280 (2012)
Han JA, Yu CL, Wang Y, Xie XQ, Yan YS, Yin GW, Guan WX, Fluid Phase Equilib., 295(1), 98 (2010)
Li CX, Han J, Wang Y, Yan YS, Pan JM, Xu XH, Zhang ZL, J. Chem. Eng. Data, 55(3), 1087 (2010)
Sheng CZ, Han J, Wang Y, Chen B, Liu Y, Zhang GC, Yan YS, Zhao XH, Fluid Phase Equilib., 364, 55 (2014)
Pei YC, Wang JJ, Liu L, Wu K, Zhao Y, J. Chem. Eng. Data, 52(5), 2026 (2007)
Zafarani-Moattar MT, Hamzehzadeh S, Nasiri S, Biotechnol. Prog., 28(1), 146 (2012)
Wang Y, Xu XH, Yan YS, Han J, Zhang ZL, Thermochim. Acta, 501(1-2), 112 (2010)
Wei XL, Wei ZB, Wang XH, Wang ZN, Sun DZ, Liu J, Zhao HH, Soft Matter, 7, 5200 (2011)
Cheluget EL, Marx S, Weber ME, Vera JH, J. Solution Chem., 23, 275 (1994)
Yang XQ, Lu Y, Sun Z, Cui KY, Tan ZJ, J. Chem. Eng. Data, 63(3), 625 (2018)
Wang Y, Hu SP, Han JA, Yan YS, J. Chem. Eng. Data, 55(11), 4574 (2010)
Wang Y, Mao YL, Han JA, Liu Y, Yan YS, J. Chem. Eng. Data, 55(12), 5621 (2010)
Lu Y, Han J, Sheng CZ, Yu P, Tan ZJ, Yan YS, Thermochim. Acta, 543, 1 (2012)
Lu Y, Han J, Tan ZP, Yan YS, J. Chem. Eng. Data, 57(8), 2313 (2012)
Perumalsamy M, Murugesan T, J. Chem. Eng. Data, 54(4), 1359 (2009)
Han J, Wang Y, Yu CL, Li YF, Kang WB, Yan YS, J. Chem. Thermodyn., 45(1), 59 (2012)
Li ZY, Pei YC, Liu L, Wang JJ, J. Chem. Thermodyn., 42(7), 932 (2010)
Gonzaleztello P, Camacho F, Blazquez G, Alarcon FJ, J. Chem. Eng. Data, 41(6), 1333 (1996)
Han J, Wang Y, Li YF, Yu CL, Yan YS, J. Chem. Eng. Data, 56(9), 3679 (2011)
Chen YH, Meng YS, Zhang SM, Zhang Y, Liu XW, Yang J, J. Chem. Eng. Data, 55(9), 3612 (2010)
Lu Y, Han J, Tan ZJ, Yan YS, J. Chem. Eng. Data, 58(1), 118 (2013)
Lu Y, Hao TF, Yan M, Han J, Tan ZJ, Yan YS, J. Chem. Eng. Data, 59(6), 1843 (2014)
Lu Y, Hao TF, Zhou Y, Han J, Tan ZJ, Yan YS, J. Chem. Thermodyn., 71, 137 (2014)
Wang Y, Hu SP, Yan YS, Guan WS, CALPHAD, 33, 726 (2009)
Zafarani-Moattar MT, Hamzehzadeh S, J. Chem. Eng. Data, 54(3), 833 (2009)
Guan Y, Lilley TH, Treffry TE, Macromolecules, 26, 3971 (1993)
Rogers RD, Bond AH, Bauer CB, Zhang J, Griffin ST, J. Chromatogr. B, 680, 221 (1996)
Zafarani-Moattar MT, Hamzehzadeh S, J. Chem. Eng. Data, 54(3), 833 (2009)
Sadeghi R, Ziamajidi F, Fluid Phase Equilib., 255(1), 46 (2007)
Sadeghi R, Golabiazar R, J. Chem. Eng. Data, 55(1), 74 (2010)
Nascimento KS, Yelo S, Cavada BS, Azevedo AM, Aires-Barros MR, J. Chem. Eng. Data, 56(2), 190 (2011)
Wang Y, Yan YS, Hu SP, Han J, Xu XH, J. Chem. Eng. Data, 55(2), 876 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로