Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 7, 2019
Accepted December 1, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Hydrate seeding effect on the metastability of CH4 hydrate
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Korea
jaewlee@kaist.ac.kr
Korean Journal of Chemical Engineering, February 2020, 37(2), 341-349(9), 10.1007/s11814-019-0451-3
Download PDF
Abstract
Cyclopentane (CP) hydrate seeds can lead to nucleation of CH4 hydrate with a lower supersaturation; the concept of nucleation potential was applied to estimate the metastable zone width (MSZW) of CH4 hydrate. To verify the crystal structure of CH4 hydrate formed from the CP hydrate seeds, the hydrate samples were analyzed by high resolution powder diffraction (HRPD). 1wt% of CP hydrates in the system reduced the MSZW of CH4 hydrate from 3.39 K to 1.32 K, and showed synergetic performance with sodium dodecyl sulfate (SDS). From the hydrate nucleation theory, SDS is able to decrease the effective surface energy for heterogeneous nucleation on the stainless steel wall, but the CP hydrate seeds provide new nucleation sites with even lower surface energy than that of the stainless steel wall. Hence, the nucleation rate depends on the amount of CP hydrate seeds, and the kinetic parameter can be estimated from the concentration of nucleation sites on the CP hydrate seeds. Also, the MSZW of CH4 hydrate was satisfactorily correlated with the amount of CP hydrate seeds by the cumulative nucleation potentials using estimated kinetic parameters.
Keywords
References
Ahn YH, Moon S, Koh DY, Hong S, Lee H, Lee JW, Park Y, Energy Storage Mater., 24, 655 (2020)
Walsh MR, Koh CA, Sloan ED, Sum AK, Wu DT, Science, 326, 1095 (2009)
Potdar S, Lee JW, Lee S, Korean J. Chem. Eng., 33(11), 3216 (2016)
Cha MJ, Shin KC, Lee H, Korean J. Chem. Eng., 34(9), 2514 (2017)
Min J, Ahn YH, Baek S, Shin K, Cha M, Lee JW, J. Phys. Chem. C, 123, 20705 (2019)
Baek S, Min J, Lee JW, Rsc Adv., 5, 58813 (2015)
Cha MJ, Lee H, Lee JW, J. Phys. Chem. C, 117, 23515 (2013)
Zhang JS, Lo C, Somasundaran P, Lee JW, J. Colloid Interface Sci., 341(2), 286 (2010)
Lee W, Baek S, Kim JD, Lee JW, Energy Fuels, 29(7), 4245 (2015)
Baek S, Min J, Ahn YH, Cha M, Lee JW, Energy Fuels, 33(1), 523 (2019)
Ahuja A, Iqbal A, Iqbal M, Lee JW, Morris JF, Energy Fuels, 32(5), 5877 (2018)
Zhang JS, Lee S, Lee JW, Ind. Eng. Chem. Res., 46(19), 6353 (2007)
Mohebbi V, Behbahani RM, Naderifar A, Korean J. Chem. Eng., 34(3), 706 (2017)
Kashchiev D, Firoozabadi A, J. Cryst. Growth, 243(3-4), 476 (2002)
Kashchiev D, Firoozabadi A, J. Cryst. Growth, 250(3-4), 499 (2003)
Kashchiev D, Firoozabadi A, J. Cryst. Growth, 241(1-2), 220 (2002)
Yang HY, Florence AJ, Crystengcomm, 19, 3966 (2017)
Yang HY, Crystengcomm, 17, 577 (2015)
Shiau LD, J. Cryst. Growth, 450, 50 (2016)
Sowa B, Maeda N, Energy Fuels, 29(9), 5692 (2015)
May EF, Lim VW, Metaxas PJ, Du JW, Stanwix PL, Rowland D, Johns ML, Haandrikman G, Crosby D, Aman ZM, Langmuir, 34(10), 3186 (2018)
Zhang JS, Lee JW, Energy Fuels, 23, 3045 (2009)
Baek S, Ahn YH, Zhang JS, Min J, Lee H, Lee JW, Appl. Energy, 202, 32 (2017)
Rodriguezcarvajal J, Physica B, 192, 55 (1993)
Zhang JS, Lo C, Couzis A, Somasundaran P, Wu J, Lee JW, J. Phys. Chem. C, 113, 17418 (2009)
Song JH, Couzis A, Lee JW, Langmuir, 26(12), 9187 (2010)
Sloan ED, Koh CA, Clathrate hydrates of natural gases, CRC Press (Taylor & Francis Group) (2008).
Tohidi B, Danesh A, Todd AC, Burgass RW, Ostergaard KK, Fluid Phase Equilib., 138(1-2), 241 (1997)
Kim DY, Park J, Lee JW, Ripmeester JA, Lee H, J. Am. Ceram. Soc., 128, 15360 (2006)
Aman ZM, Olcott K, Pfeiffer K, Sloan ED, Sum AK, Koh CA, Langmuir, 29(8), 2676 (2013)
Lee H, Lee JW, Kim DY, Park J, Seo YT, Zeng H, Moudrakovski IL, Ratcliffe CI, Ripmeester JA, Nature, 434, 743 (2005)
Kashchiev D, Nucleation: Basic Theory with Applications, Butterworth-Heinmann (2000).
Smith JM, van Ness HC, Abbott MM, Introduction to Chemical Engineering Thermodynamics, McGraw-Hill (2005).
Skrotzki J, Connolly P, Schnaiter M, Saathoff H, Mohler O, Wagner R, Niemand M, Ebert V, Leisner T, Atmos. Chem. and Phys., 13, 4451 (2013).
Witherspoon PA, Saraf DN, J. Phys. Chem., 69, 3752 (1965)
Lekvam K, Bishnoi PR, Fluid Phase Equilib., 131(1-2), 297 (1997)
Mohebbi V, Naderifar A, Behbahani RM, Moshfeghian M, Petrol. Sci. Technol., 32, 1418 (2014)
Hounslow MJ, Wynn EJW, Kubo M, Pitt K, Chem. Eng. Sci., 101, 731 (2013)
Vollhardt D, Adv. Colloid Interface Sci., 47, 1 (1993)
Vollhardt D, Ziller M, Retter U, Langmuir, 9, 3208 (1993)
Walsh MR, Koh CA, Sloan ED, Sum AK, Wu DT, Science, 326, 1095 (2009)
Potdar S, Lee JW, Lee S, Korean J. Chem. Eng., 33(11), 3216 (2016)
Cha MJ, Shin KC, Lee H, Korean J. Chem. Eng., 34(9), 2514 (2017)
Min J, Ahn YH, Baek S, Shin K, Cha M, Lee JW, J. Phys. Chem. C, 123, 20705 (2019)
Baek S, Min J, Lee JW, Rsc Adv., 5, 58813 (2015)
Cha MJ, Lee H, Lee JW, J. Phys. Chem. C, 117, 23515 (2013)
Zhang JS, Lo C, Somasundaran P, Lee JW, J. Colloid Interface Sci., 341(2), 286 (2010)
Lee W, Baek S, Kim JD, Lee JW, Energy Fuels, 29(7), 4245 (2015)
Baek S, Min J, Ahn YH, Cha M, Lee JW, Energy Fuels, 33(1), 523 (2019)
Ahuja A, Iqbal A, Iqbal M, Lee JW, Morris JF, Energy Fuels, 32(5), 5877 (2018)
Zhang JS, Lee S, Lee JW, Ind. Eng. Chem. Res., 46(19), 6353 (2007)
Mohebbi V, Behbahani RM, Naderifar A, Korean J. Chem. Eng., 34(3), 706 (2017)
Kashchiev D, Firoozabadi A, J. Cryst. Growth, 243(3-4), 476 (2002)
Kashchiev D, Firoozabadi A, J. Cryst. Growth, 250(3-4), 499 (2003)
Kashchiev D, Firoozabadi A, J. Cryst. Growth, 241(1-2), 220 (2002)
Yang HY, Florence AJ, Crystengcomm, 19, 3966 (2017)
Yang HY, Crystengcomm, 17, 577 (2015)
Shiau LD, J. Cryst. Growth, 450, 50 (2016)
Sowa B, Maeda N, Energy Fuels, 29(9), 5692 (2015)
May EF, Lim VW, Metaxas PJ, Du JW, Stanwix PL, Rowland D, Johns ML, Haandrikman G, Crosby D, Aman ZM, Langmuir, 34(10), 3186 (2018)
Zhang JS, Lee JW, Energy Fuels, 23, 3045 (2009)
Baek S, Ahn YH, Zhang JS, Min J, Lee H, Lee JW, Appl. Energy, 202, 32 (2017)
Rodriguezcarvajal J, Physica B, 192, 55 (1993)
Zhang JS, Lo C, Couzis A, Somasundaran P, Wu J, Lee JW, J. Phys. Chem. C, 113, 17418 (2009)
Song JH, Couzis A, Lee JW, Langmuir, 26(12), 9187 (2010)
Sloan ED, Koh CA, Clathrate hydrates of natural gases, CRC Press (Taylor & Francis Group) (2008).
Tohidi B, Danesh A, Todd AC, Burgass RW, Ostergaard KK, Fluid Phase Equilib., 138(1-2), 241 (1997)
Kim DY, Park J, Lee JW, Ripmeester JA, Lee H, J. Am. Ceram. Soc., 128, 15360 (2006)
Aman ZM, Olcott K, Pfeiffer K, Sloan ED, Sum AK, Koh CA, Langmuir, 29(8), 2676 (2013)
Lee H, Lee JW, Kim DY, Park J, Seo YT, Zeng H, Moudrakovski IL, Ratcliffe CI, Ripmeester JA, Nature, 434, 743 (2005)
Kashchiev D, Nucleation: Basic Theory with Applications, Butterworth-Heinmann (2000).
Smith JM, van Ness HC, Abbott MM, Introduction to Chemical Engineering Thermodynamics, McGraw-Hill (2005).
Skrotzki J, Connolly P, Schnaiter M, Saathoff H, Mohler O, Wagner R, Niemand M, Ebert V, Leisner T, Atmos. Chem. and Phys., 13, 4451 (2013).
Witherspoon PA, Saraf DN, J. Phys. Chem., 69, 3752 (1965)
Lekvam K, Bishnoi PR, Fluid Phase Equilib., 131(1-2), 297 (1997)
Mohebbi V, Naderifar A, Behbahani RM, Moshfeghian M, Petrol. Sci. Technol., 32, 1418 (2014)
Hounslow MJ, Wynn EJW, Kubo M, Pitt K, Chem. Eng. Sci., 101, 731 (2013)
Vollhardt D, Adv. Colloid Interface Sci., 47, 1 (1993)
Vollhardt D, Ziller M, Retter U, Langmuir, 9, 3208 (1993)