Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 25, 2019
Accepted December 7, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
A detailed numerical study on the evolution of droplet size distribution of dibutyl phthalate in a laminar flow diffusion chamber
1Institute of Environmental Engineering, National Chiao Tung University, Hsinchu 300, Taiwan 2School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China 3Mechanical Engineering Department, University of Minnesota, Minneapolis, MN 55455, USA 4School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
cjtsai@nctu.edu.tw
Korean Journal of Chemical Engineering, March 2020, 37(3), 423-433(11), 10.1007/s11814-019-0456-y
Download PDF
Abstract
A numerical model was used to study the homogeneous nucleation process of dibutyl phthalate (DBP) vapor in a laminar flow diffusion chamber (LFDC); the spatial and temporal evolution of DBP droplet size distribution was governed by the population balance equation (PBE). In the PBE, the nucleation rate was calculated by the selfconsistent correction nucleation theory (SCCNT), droplet coagulation, vapor and droplet deposition losses were considered. The simulation results showed that the nucleation rate predicted by the SCCNT improved the underestimation of that predicted by the classical nucleation theory. Due to vapor deposition before nucleation and droplet deposition after nucleation on the wall, the DBP mass loss was severe, accounting for about 86.3% of the total inlet vapor mass, and the droplet size distribution shifted towards larger diameters. The simulation results agreed well with the experimental data in terms of the droplet size distribution and average number concentration at the outlet of the LFDC because of the detailed droplet dynamic, transport and deposition mechanisms treated in this model. Based on this model, the number of molecules in the critical cluster was calculated using the first nucleation theorem and found to be larger about 50% than that calculated using the Gibbs-Thompson equation.
Keywords
References
Barahona D, Nenes A, J. Geophys. Res., 113, D11211 (2008)
Han Z, Han X, Li H, Li P, Korean J. Chem. Eng., 333, 487 (2016)
Mochizuki K, Qiu YQ, Molinero V, J. Am. Chem. Soc., 139(47), 17003 (2017)
Patakfalvi R, Papp S, Dekany I, J. Nanopart. Res., 9, 353 (2007)
Ryu T, Olivas-Martinez M, Sohn HY, Fang ZZ, Ring TA, Chem. Eng. Sci., 65(5), 1773 (2010)
Kozisek Z, Demo P, J. Aerosol Sci., 40(9), 802 (2009)
Wyslouzil BE, Wolk J, J. Chem. Phys., 145, 211702 (2016)
Manka AA, Brus D, Hyvarinen AP, Lihavainen H, Wolk J, Strey R, J. Chem. Phys., 132, 244505 (2010)
Hameri K, Kulmala M, J. Chem. Phys., 105(17), 7696 (1996)
Wagner PE, Strey R, J. Phys. Chem., 85, 2694 (1981)
Looijmans KNH, Van Dongen MEH, Exp. Fluids, 23, 54 (1997)
Kane D, Elshall MS, J. Chem. Phys., 105(17), 7617 (1996)
Lesniewski TK, Friedlander SK, P. Roy. Soc. A-Math. Phys., 454, 2477 (1998)
Lihavainen H, Viisanen Y, Kulmala M, J. Chem. Phys., 114(22), 10031 (2001)
Anisimov MP, Cherevko AG, J. Aerosol Sci., 16, 97 (1985)
Okuyama K, Kousaka Y, Warren DR, Flagan RC, Seinfeld JH, Aerosol Sci. Technol., 6, 15 (1987)
Hameri K, Kulmala M, Krissinel E, Kodenyov G, J. Chem. Phys., 105(17), 7683 (1996)
Nguyen HV, Okuyama K, Mimura T, Kousaka Y, Flagan RC, Seinfeld JH, J. Colloid Interface Sci., 119, 491 (987)
Wagner PE, Anisimov MP, J. Aerosol Sci., 24, S103 (1993)
Anisimov MP, Hameri K, Kulmala M, J. Aerosol Sci., 25, 23 (1994)
AeroSolved, available at: https://www.intervals.science/resources/aerosolved, accessed on September 10th, 2019.
Frederix EMA, Stanic M, Kuczaj AK, Nordlund M, Geurts BJ, Int. J. Multiph. Flow, 74, 184 (2015)
Girshick SL, Chiu CP, J. Chem. Phys., 93, 1273 (1990)
KRUIS FE, SCHOONMAN J, SCARLETT B, J. Aerosol Sci., 25(7), 1291 (1994)
Kormer R, Schmid HJ, Peukert W, J. Aerosol Sci., 41(11), 1008 (2010)
Neuber G, Kronenburg A, Stein OT, Cleary MJ, Chem. Eng. Sci., 167, 204 (2017)
Winkelmann C, Kuczaj AK, Nordlund M, Geurts BJ, J. Eng. Math., 108, 171 (2017)
Winkelmann C, Nordlund M, Kuczaj AK, Stolz S, Geurts BJ, Int. J. Numer. Meth. Fluids, 74, 313 (2014)
Patankar S, Numerical heat transfer and fluid flow, CRC press, New York (1980).
Mullick K, Bhabhe A, Manka A, Wolk J, Strey R, Wyslouzil BE, J. Phys. Chem. B, 119(29), 9009 (2015)
Hinds WC, Aerosol technology: properties, behavior, and measurement of airborne particles, Wiley, New York (1999).
Lee KW, Chen H, Aerosol Sci. Technol., 3, 327 (1984)
Youn JS, Park SJ, Cho HW, Jung YW, Jeon KJ, Korean J. Chem. Eng., 35(9), 1948 (2018)
Frederix EMA, Kuczaj AK, Nordlund M, Veldman AEP, Geurts BJ, J. Aerosol Sci., 104, 123 (2017)
OpenFOAM, available at: https://www.openfoam.com, accessed on September 10th, 2019.
Bhusare VH, Dhiman MK, Kalaga DV, Roy S, Joshi JS, Chem. Eng. J., 317, 157 (2017)
Lin JS, Tsai CJ, Chang CP, J. Aerosol Sci., 35(10), 1235 (2004)
Hong W, Wang X, Korean J. Chem. Eng., 35(7), 1517 (2018)
Kashchiev D, J. Chem. Phys, 76, 5098 (1982)
Kodenev GG, Samodurov AV, Baldin MN, Baklanov AM, Colloid J., 76, 38 (2014)
Wilck M, Hameri K, Stratmann F, Kulmala M, J. Aerosol Sci., 29(8), 899 (1998)
Han Z, Han X, Li H, Li P, Korean J. Chem. Eng., 333, 487 (2016)
Mochizuki K, Qiu YQ, Molinero V, J. Am. Chem. Soc., 139(47), 17003 (2017)
Patakfalvi R, Papp S, Dekany I, J. Nanopart. Res., 9, 353 (2007)
Ryu T, Olivas-Martinez M, Sohn HY, Fang ZZ, Ring TA, Chem. Eng. Sci., 65(5), 1773 (2010)
Kozisek Z, Demo P, J. Aerosol Sci., 40(9), 802 (2009)
Wyslouzil BE, Wolk J, J. Chem. Phys., 145, 211702 (2016)
Manka AA, Brus D, Hyvarinen AP, Lihavainen H, Wolk J, Strey R, J. Chem. Phys., 132, 244505 (2010)
Hameri K, Kulmala M, J. Chem. Phys., 105(17), 7696 (1996)
Wagner PE, Strey R, J. Phys. Chem., 85, 2694 (1981)
Looijmans KNH, Van Dongen MEH, Exp. Fluids, 23, 54 (1997)
Kane D, Elshall MS, J. Chem. Phys., 105(17), 7617 (1996)
Lesniewski TK, Friedlander SK, P. Roy. Soc. A-Math. Phys., 454, 2477 (1998)
Lihavainen H, Viisanen Y, Kulmala M, J. Chem. Phys., 114(22), 10031 (2001)
Anisimov MP, Cherevko AG, J. Aerosol Sci., 16, 97 (1985)
Okuyama K, Kousaka Y, Warren DR, Flagan RC, Seinfeld JH, Aerosol Sci. Technol., 6, 15 (1987)
Hameri K, Kulmala M, Krissinel E, Kodenyov G, J. Chem. Phys., 105(17), 7683 (1996)
Nguyen HV, Okuyama K, Mimura T, Kousaka Y, Flagan RC, Seinfeld JH, J. Colloid Interface Sci., 119, 491 (987)
Wagner PE, Anisimov MP, J. Aerosol Sci., 24, S103 (1993)
Anisimov MP, Hameri K, Kulmala M, J. Aerosol Sci., 25, 23 (1994)
AeroSolved, available at: https://www.intervals.science/resources/aerosolved, accessed on September 10th, 2019.
Frederix EMA, Stanic M, Kuczaj AK, Nordlund M, Geurts BJ, Int. J. Multiph. Flow, 74, 184 (2015)
Girshick SL, Chiu CP, J. Chem. Phys., 93, 1273 (1990)
KRUIS FE, SCHOONMAN J, SCARLETT B, J. Aerosol Sci., 25(7), 1291 (1994)
Kormer R, Schmid HJ, Peukert W, J. Aerosol Sci., 41(11), 1008 (2010)
Neuber G, Kronenburg A, Stein OT, Cleary MJ, Chem. Eng. Sci., 167, 204 (2017)
Winkelmann C, Kuczaj AK, Nordlund M, Geurts BJ, J. Eng. Math., 108, 171 (2017)
Winkelmann C, Nordlund M, Kuczaj AK, Stolz S, Geurts BJ, Int. J. Numer. Meth. Fluids, 74, 313 (2014)
Patankar S, Numerical heat transfer and fluid flow, CRC press, New York (1980).
Mullick K, Bhabhe A, Manka A, Wolk J, Strey R, Wyslouzil BE, J. Phys. Chem. B, 119(29), 9009 (2015)
Hinds WC, Aerosol technology: properties, behavior, and measurement of airborne particles, Wiley, New York (1999).
Lee KW, Chen H, Aerosol Sci. Technol., 3, 327 (1984)
Youn JS, Park SJ, Cho HW, Jung YW, Jeon KJ, Korean J. Chem. Eng., 35(9), 1948 (2018)
Frederix EMA, Kuczaj AK, Nordlund M, Veldman AEP, Geurts BJ, J. Aerosol Sci., 104, 123 (2017)
OpenFOAM, available at: https://www.openfoam.com, accessed on September 10th, 2019.
Bhusare VH, Dhiman MK, Kalaga DV, Roy S, Joshi JS, Chem. Eng. J., 317, 157 (2017)
Lin JS, Tsai CJ, Chang CP, J. Aerosol Sci., 35(10), 1235 (2004)
Hong W, Wang X, Korean J. Chem. Eng., 35(7), 1517 (2018)
Kashchiev D, J. Chem. Phys, 76, 5098 (1982)
Kodenev GG, Samodurov AV, Baldin MN, Baklanov AM, Colloid J., 76, 38 (2014)
Wilck M, Hameri K, Stratmann F, Kulmala M, J. Aerosol Sci., 29(8), 899 (1998)