ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 5, 2019
Accepted December 21, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Synthesis of MoOx nanostructures with the assistance of polymeric surfactants for dye removal from water

Department of Physics, Jundi-Shapur University of Technology, Dezful, Iran
tahmasebi@jsu.ac.ir
Korean Journal of Chemical Engineering, March 2020, 37(3), 448-455(8), 10.1007/s11814-019-0469-6
downloadDownload PDF

Abstract

MoO3 and reduced molybdenum oxides (MoOx, x=2.87 and 2) were successfully synthesized through a onepot hydrothermal method without and with adding polymeric surfactants (PVP or PVA) as capping and reducing agents into the reaction solution. The synthesized nanostructures were characterized by different techniques. Adding polymeric surfactants into hydrothermal reaction solution had significant effect on the structural, optical and morphological properties of products. Orthorhombic phase of MoO3 nanorods, monoclinic phase of MoO2.87 nanoparticles and monoclinic phase of MoO2 nanoparticles were obtained in the absence and in the presence of PVP and PVA, respectively. The specific surface area of MoO3, MoO2.87 and MoO2 samples calculated by the BET method was found to be 15.64, 5.94 and 87.62m2g?1, respectively. The dye adsorption capability of products was investigated for removal of RhB molecules from water. The experimental results indicated that the RhB adsorption on MoO2 is much faster and higher than that of MoO3 and MoO2.87, which can be attributed to the larger specific surface area. Furthermore, the kinetic models and isotherm models were studied to determine the adsorption rate and mechanism of RhB adsorption onto the products.

References

Cramer AJ, Cole JM, J. Mater. Chem. A, 5, 10746 (2017)
Natarajan K, Bajaj HC, Tayade RJ, J. Ind. Eng. Chem., 34, 146 (2016)
Adhikari S, Mandal S, Sarkar D, Kim DH, Madras G, Appl. Surf. Sci., 420, 472 (2017)
Liu XX, Gong WP, Luo J, Zou CT, Yang Y, Yang SJ, Appl. Surf. Sci., 362, 517 (2016)
Wang SY, Yang B, Liu YP, J. Colloid Interface Sci., 507, 225 (2017)
Toor M, Jin B, Chem. Eng. J., 187, 79 (2012)
Li LP, Kwan JKC, Yeung KL, Chem. Eng. J., 368, 10 (2019)
Arumugham T, Amimodu RG, Kaleekkal NJ, Rana D, J. Environ. Sci., 82, 57 (2019)
Tahmasebi N, Mirzavand S, Hakimyfard A, Barzegar S, Adv. Powder Technol., 30(2), 257 (2019)
Adhikari S, Kim DH, Korean J. Chem. Eng., 36(3), 468 (2019)
Zhang S, Yang H, Huang H, Gao H, Wang X, Cao R, Li J, Xu X, Wang X, J. Mater. Chem. A, 5, 15913 (2017)
Ryu SM, Nam C, Phys. Status Solidi, 215, 170099 (2018)
Jeon S, Yong K, J. Mater. Chem., 20, 10146 (2010)
Wang M, Song XX, Cheng XL, Zhou X, Zhang XF, Cai Z, Xu YM, Gao S, Zhao H, Huo LH, RSC Adv., 5, 85248 (2015)
Xiao L, Zhang SS, Huang JH, Powder Technol., 258, 297 (2014)
Mu W, Li M, Li X, Ma Z, Zhang R, Yu Q, Lv K, Xie X, He J, Wei H, Jian Y, Dalton Trans., 44, 7419 (2015)
Lin KJ, Qin M, Geng XG, Wang LD, Wua HJ, Adv. Powder Technol., 29(8), 1933 (2018)
Wang N, Chen J, Wang JA, Feng JT, Yan W, Powder Technol., 347, 93 (2019)
Zhan Y, Liu Y, Zu H, Guo Y, Wu S, Yang H, Liu Z, Lei B, Zhuang J, Zhang X, Huang D, Nanoscale, 10, 5997 (2018)
Huang Q, Hu S, Zhuang J, Wang X, Chem. Eur. J., 18, 15283 (2012)
Zhang Q, Li X, Yi W, Li W, Bai H, Liu J, Xi G, Anal. Chem., 89, 11765 (2017)
Zhao Y, Zhang Y, Yang Z, Yan Y, Sun K, Sci. Technol. Adv. Mat., 14, 043501 (2013)
Li XY, Shao J, Li J, Zhang L, Qu QT, Zheng HH, J. Power Sources, 237, 80 (2013)
Liu W, Li X, Li W, Zhang Q, Bai H, Li J, Xi G, Biomaterials, 163, 43 (2018)
Hu HM, Xu JC, Deng CH, Ge XQ, Mater. Res. Bull., 51, 402 (2014)
Hu ZF, Liu G, Chen XQ, Shen ZR, Yu JC, Adv. Funct. Mater., 26(25), 4445 (2016)
Cao Y, Wang H, Ren X, Li F, Wang J, Ding R, Wang L, Wu J, Liu Z, Lv B, CrystEngComm, 21, 5106 (2019)
Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE, Dalton Trans., 44, 17883 (2015)
Sagitha P, Sarada K, Muraleedharan K, Trans. Nonferrous Met. Soc. China, 26, 2693 (2016)
Washio I, Xiong YJ, Yin YD, Xia YN, Adv. Mater., 18(13), 1745 (2006)
Reddy CVS, Walker EH, Wicker SA, Williams QL, Kalluru RR, J. Solid State Electr., 13, 1945 (2009)
Etman AS, Abdelhamid HN, Yuan Y, Wang L, Zou X, Sun J, ACS Omega, 3, 2193 (2018)
Reddy CVS, Qi YY, Jin W, Zhu QY, Deng ZR, Chen W, Mho SI, J. Solid State Electr., 11, 1239 (2007)
Patil RS, Uplane MD, Patil PS, Appl. Surf. Sci., 252(23), 8050 (2006)
Zhang H, Zeng L, Wu X, Lian L, Wei M, J. Alloy. Compd., 580, 358 (2013)
Kharazmi A, Faraji N, Hussin RM, Saion E, Yunus WMM, Behzad K, Beilstein J. Nanotechnol., 6, 529 (2015)
Zhang Y, Sun K, Wu D, Xie W, Xie F, Zhao X, Wang X, ChemCatChem, 11, 2546 (2019)
Song H, You S, Jia X, Appl. Phys. A., 121, 541 (2015)
Han S, Liu K, Hu L, Teng F, Yu P, Zhu Y, Sci. Rep., 7, 43599 (2017)
Qiao XQ, Hu FC, Tian FY, Hou DF, Li DS, RSC Adv., 6, 11631 (2016)
Li ZZ, Meng XC, Zhang ZS, Mater. Res. Bull., 111, 238 (2019)
Gao X, Xiao F, Yang C, Wang J, Su X, J. Mater. Chem. A, 1, 5831 (2013)
Rakass S, Hassani HO, Abboudi M, Kooli F, Mohmoud A, Aljuhani A, Al Wadaani F, Molecules, 23, 2295 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로