Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 19, 2019
Accepted December 25, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Preparation and enzymatic activity of Fe3O4-IDA-Ni/NAD kinase magnetic catalyst
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
liucx@mail.buct.edu.cn
Korean Journal of Chemical Engineering, March 2020, 37(3), 475-481(7), 10.1007/s11814-019-0472-y
Download PDF
Abstract
The use of oxidoreductases as biocatalysts for industrial production of valuable compounds has a strong demand for NADP. Herein, we prepared superparamagnetic NAD kinase catalyst to synthesize NADP in vitro. First, Fe3O4 particles were synthesized through a solvothermal method, followed by the chemical modification with epichlorohydrin, iminodiacetic acid, and Ni2+ to yield functional Fe3O4 sub-microspheres. Subsequently, NAD kinase of Escherichia coli was overexpressed and immobilized on to the surface of magnetic sub-microspheres. The immobilized NAD kinase was used to catalyze the conversion of NAD to NADP in a cell-free system. Under optimal condition, the conversion ratio of NAD reached 91.7% and remained at 86.3% after repeated use for five times. Our study revealed that the novel magnetic NAD kinase catalyst possessed favorable properties for magnetic manipulation and NADP production.
References
Wang Y, San KY, Bennett GN, Curr. Opin. Biotechnol., 24, 994 (2013)
Iyanagi T, BBA-Bioenergetics, 1860, 233 (2019)
Ying WH, Antioxid. Redox Sign., 10, 179 (2008)
Magni G, Orsomando G, Raffaelli N, Mini-Rev. Med. Chem., 6, 739 (2006)
Kara S, Schrittwieser JH, Hollmann F, Ansorge-Schumacher MB, Appl. Microbiol. Biotechnol., 98(4), 1517 (2014)
Zhao H, Van Der Donk WA, Curr. Opin. Biotechnol., 14, 583 (2003)
Uchida T, Watanabe T, Kato J, Chibata I, Biotechnol. Bioeng., 20, 255 (1978)
Tanaka Y, Hayashi T, Kawashima K, Yokoyama T, Watanabe T, Biotechnol. Bioeng., 24, 857 (1982)
Murata K, Kato J, Chibata I, Biotechnol. Bioeng., 21, 887 (1979)
Matsushita H, Yokoyama S, Obayashi A, Can. J. Microbiol., 32, 585 (1986)
Kawai S, Mori S, Mukai T, Matsukawa H, Matuo Y, Murata K, J. Biosci. Bioeng., 92(5), 447 (2001)
Stepankova V, Bidmanova S, Koudelakova T, Prokop Z, Chaloupkova R, Damborsky J, ACS Catalysis, 3, 2823 (2013)
Zhang Y, Zhang J, Huang X, Zhou X, Wu H, Guo S, Small, 8, 154 (2012)
Mu X, Qiao J, Qi L, Dong P, Ma H, ACS Appl. Mater. Inter., 6, 21346 (2014)
Singh RK, Tiwari MK, Singh R, Lee JK, Int. J. Mol. Sci., 14(1), 1232 (2013)
Ma J, Zhang L, Liang Z, Zhang W, Zhang Y, Anal. Chim. Acta, 632, 1 (2009)
Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN, Chem. Rev., 108(6), 2064 (2008)
Liao MH, Chen DH, Biotechnol. Lett., 23(20), 1723 (2001)
Sohrabi N, Rasouli N, Torkzadeh M, Chem. Eng. J., 240, 426 (2014)
Sen T, Sebastianelli A, Bruce IJ, J. Am. Chem. Soc., 128(22), 7130 (2006)
Liu B, Liu J, Nano Res., 10, 1125 (2017)
Pan J, Ou Z, Tang L, Shi H, Korean J. Chem. Eng., 36(5), 729 (2019)
Jose L, Lee C, Hwang A, Park JH, Song JK, Paik HJ, Eur. Polym. J., 112, 524 (2019)
Cai Z, Wei Y, Wu M, Guo Y, Xie Y, Tao R, Li R, Wang P, Ma A, Zhang H, ACS Sus. Chem. Eng., 7, 6685 (2019)
Veisi H, Ghorbani M, Hemmati S, Mat. Sci. Eng. C, 98, 584 (2019)
Zhang Q, Zheng Z, Liu C, Liu C, Tan T, Colloids Surf. B: Biointerfaces, 140, 446 (2016)
Guo X, Mao F, Wang W, Yang Y, Bai Z, ACS Appl. Mat. Inter., 7, 14983 (2015)
Chen YW, Wang JL, Chem. Eng. J., 168(1), 286 (2011)
He F, Fan J, Ma D, Zhang L, Leung C, Chan HL, Carbon, 48, 3139 (2010)
Lei Z, Jiang Q, J. Agric. Food Chem., 59, 2592 (2011)
Hu B, Pan J, Yu HL, Liu JW, Xu JH, Process Biochem., 44(9), 1019 (2009)
Bayramoglu G, Kaya B, Arica MY, Food Chem., 92, 261 (2005)
Kawai S, Mori S, Mukai T, Hashimoto W, Murata K, Eur. J. Biochem., 268, 4359 (2001)
Iyanagi T, BBA-Bioenergetics, 1860, 233 (2019)
Ying WH, Antioxid. Redox Sign., 10, 179 (2008)
Magni G, Orsomando G, Raffaelli N, Mini-Rev. Med. Chem., 6, 739 (2006)
Kara S, Schrittwieser JH, Hollmann F, Ansorge-Schumacher MB, Appl. Microbiol. Biotechnol., 98(4), 1517 (2014)
Zhao H, Van Der Donk WA, Curr. Opin. Biotechnol., 14, 583 (2003)
Uchida T, Watanabe T, Kato J, Chibata I, Biotechnol. Bioeng., 20, 255 (1978)
Tanaka Y, Hayashi T, Kawashima K, Yokoyama T, Watanabe T, Biotechnol. Bioeng., 24, 857 (1982)
Murata K, Kato J, Chibata I, Biotechnol. Bioeng., 21, 887 (1979)
Matsushita H, Yokoyama S, Obayashi A, Can. J. Microbiol., 32, 585 (1986)
Kawai S, Mori S, Mukai T, Matsukawa H, Matuo Y, Murata K, J. Biosci. Bioeng., 92(5), 447 (2001)
Stepankova V, Bidmanova S, Koudelakova T, Prokop Z, Chaloupkova R, Damborsky J, ACS Catalysis, 3, 2823 (2013)
Zhang Y, Zhang J, Huang X, Zhou X, Wu H, Guo S, Small, 8, 154 (2012)
Mu X, Qiao J, Qi L, Dong P, Ma H, ACS Appl. Mater. Inter., 6, 21346 (2014)
Singh RK, Tiwari MK, Singh R, Lee JK, Int. J. Mol. Sci., 14(1), 1232 (2013)
Ma J, Zhang L, Liang Z, Zhang W, Zhang Y, Anal. Chim. Acta, 632, 1 (2009)
Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN, Chem. Rev., 108(6), 2064 (2008)
Liao MH, Chen DH, Biotechnol. Lett., 23(20), 1723 (2001)
Sohrabi N, Rasouli N, Torkzadeh M, Chem. Eng. J., 240, 426 (2014)
Sen T, Sebastianelli A, Bruce IJ, J. Am. Chem. Soc., 128(22), 7130 (2006)
Liu B, Liu J, Nano Res., 10, 1125 (2017)
Pan J, Ou Z, Tang L, Shi H, Korean J. Chem. Eng., 36(5), 729 (2019)
Jose L, Lee C, Hwang A, Park JH, Song JK, Paik HJ, Eur. Polym. J., 112, 524 (2019)
Cai Z, Wei Y, Wu M, Guo Y, Xie Y, Tao R, Li R, Wang P, Ma A, Zhang H, ACS Sus. Chem. Eng., 7, 6685 (2019)
Veisi H, Ghorbani M, Hemmati S, Mat. Sci. Eng. C, 98, 584 (2019)
Zhang Q, Zheng Z, Liu C, Liu C, Tan T, Colloids Surf. B: Biointerfaces, 140, 446 (2016)
Guo X, Mao F, Wang W, Yang Y, Bai Z, ACS Appl. Mat. Inter., 7, 14983 (2015)
Chen YW, Wang JL, Chem. Eng. J., 168(1), 286 (2011)
He F, Fan J, Ma D, Zhang L, Leung C, Chan HL, Carbon, 48, 3139 (2010)
Lei Z, Jiang Q, J. Agric. Food Chem., 59, 2592 (2011)
Hu B, Pan J, Yu HL, Liu JW, Xu JH, Process Biochem., 44(9), 1019 (2009)
Bayramoglu G, Kaya B, Arica MY, Food Chem., 92, 261 (2005)
Kawai S, Mori S, Mukai T, Hashimoto W, Murata K, Eur. J. Biochem., 268, 4359 (2001)