Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 16, 2019
Accepted December 16, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Antifungal mechanisms of ε-poly-L-Lysine with different molecular weights on Saccharomyces cerevisiae
1State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China 2College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
jdcui@tust.edu.cn
Korean Journal of Chemical Engineering, March 2020, 37(3), 482-492(11), 10.1007/s11814-019-0466-9
Download PDF
Abstract
ε-Poly-L-lysine (ε-PL) is a natural antimicrobial cationic peptide. Antimicrobial activity of ε-PL is closely related to its molecular weight (Mw). However, the antimicrobial mechanisms of ε-PL with different Mws are still vague. In this study, Saccharomyces cerevisiae was used as the model system to analyze the mechanism from these three aspects: cell wall, cell membrane, and metabolism. The results showed that high-Mw ε-PL (1-3 kDa and >3 kDa) and commercial ε-PL product caused cell wall lesions, and significantly improved cell membrane permeability compared to low-Mw ε-PL (<1 kDa), resulting in leaking of the protoplasm through the pores and cell death. Furthermore, metabolomics analysis showed that high-Mw ε-PL (1-3 kDa and >3 kDa) and product displayed higher inhibition effect on the glycolysis pathway and tricarboxylic cycle than that of low-Mw ε-PL (<1 kDa).
Keywords
References
Gould G, Russell N, Food preservatives, Springer (2003).
Ritchie ML, Romanuk TN, Plos One, 7, e34938 (2012)
Gao C, Tao Y, Jie D, Fang H, Luo H, Wan Y, Food Hydrocolloids, 36, 204 (2014)
Xu Z, Xu Z, Feng X, Xu D, Liang J, Xu H, Appl. Microbiol. Biotechnol., 100, 15 (2016)
Miao JY, Zhou JL, Liu G, Chen FL, Chen Y, Gao X, Dixon W, Song M, Xiao H, Cao Y, Food Control, 59, 609 (2016)
Hyldgaard M, Mygind T, Vad BS, Stenvang M, Otzen DE, Meyer RL, Appl. Environ. Microbiol., 80, 7759 (2014)
Su R, Li T, Fan D, Huang J, Zhao J, Yan B, Zhou W, Zhang W, Zhang H, J. Sci. Food Agric., 99, 6 (2019)
Shima S, Matsuoka H, Iwamoto T, Sakai H, J. Antibiot., 37, 11 (1984)
Takehara M, Hibino A, Saimura M, Hirohara H, Biotechnol. Lett., 32, 9 (2010)
Wei M, Ge Y, Li C, Chen Y, Wang W, Duan B, Li X, Physiol. Mol. Plant Pathol., 103, 23 (2018)
Ye R, Xu H, Wan C, Peng S, Wang L, Xu H, Aguilar ZP, Xiong Y, Zeng Z, Wei H, Biochem. Biophys. Res. Commun., 439, 1 (2013)
Liu K, Zhou X, Fu M, Postharvest Biol. Tec., 123, 94 (2017)
Li H, He C, Li G, Zhang Z, Li B, Tian S, Postharvest Biol. Technol., 147, 1 (2019)
Wang E, Li Y, Maguy BL, Lou Z, Wang H, Zhao W, Chen X, Food Chem., 294, 533 (2019)
Veerman ECI, Valentijn-Benz M, van’t Hof W, Nazmi K, van Marle J, Amerongen AVN, Biol. Chem., 391, 1 (2010)
Zhang S, Xiong J, Lou W, Ning Z, Zhang D, Yang J, Przem. Chem., 98(1), 113 (2019)
Ding MZ, Zhou X, Yuan Y, Metabolomics, 6, 1 (2010)
Shih IL, Shen MH, Van YTJBT, Bioresour. Technol., 97, 9 (2006)
Song R, Wei RB, Luo HY, Wang DFJM, Molecules, 17, 3 (2012)
Guilhelmelli F, Vilela N, Albuquerque P, Derengowski LS, Silva-Pereira I, Kyaw C, Front Microbiol., 4, 353 (2013)
Yeaman MR, Yount NY, Pharmacol. Rev., 55, 1 (2003)
Ladokhin AS, White SHJBB, BBA-Biomembranes, 1514, 2 (2001)
Teixeira V, Feio MJ, Bastos M, Prog. Lipid Res., 51, 2 (2012)
Brogden KA, Nat. Rev. Microbiol., 3, 3 (2005)
Singer MA, Lindquist S, Trends in Biotechnol., 16, 11 (1998).
Sharma SC, FEMS Microbiol. Lett., 152, 11 (1997)
Parrou JL, Teste MA, Francois J, J. Microbiol., 143, 6 (1997)
Godon C, Lagniel G, Lee J, Buhler JM, Kieffer S, Perrot R, Boucherie H, Toledano MB, Labarre J, J. Biol. Chem., 273, 35 (1998)
Natera V, Sobrevals L, Fabra A, Castro S, Curr. Microbiol., 53, 6 (2006)
Yap S, Lim SJAOM, Arch Microbiol., 135, 3 (1983)
Takagi H, Iwamoto F, Nakamori S, Appl. Microbiol. Biotechnol., 47, 4 (1997)
Kubota S, Takeo I, Kume K, Kanai M, Shitamukai A, Mizunuma M, Miyakawa T, Shimoi H, Iefuji H, Hirata D, Biosci. Biotechnol. Biochem., 68, 4 (2004)
Li H, Ma M, Luo S, Zhang R, Han P, Hu W, Int. J. Biochem. Cell B., 44, 7 (2012)
Ding M, Wang X, Yang Y, Yuan Y, OMICS: J. Integrative Biol., 15, 10 (2011)
Barsch A, Carvalho HG, Cullimore JV, Niehaus K, J. Biotechnol., 127, 1 (2006)
Ritchie ML, Romanuk TN, Plos One, 7, e34938 (2012)
Gao C, Tao Y, Jie D, Fang H, Luo H, Wan Y, Food Hydrocolloids, 36, 204 (2014)
Xu Z, Xu Z, Feng X, Xu D, Liang J, Xu H, Appl. Microbiol. Biotechnol., 100, 15 (2016)
Miao JY, Zhou JL, Liu G, Chen FL, Chen Y, Gao X, Dixon W, Song M, Xiao H, Cao Y, Food Control, 59, 609 (2016)
Hyldgaard M, Mygind T, Vad BS, Stenvang M, Otzen DE, Meyer RL, Appl. Environ. Microbiol., 80, 7759 (2014)
Su R, Li T, Fan D, Huang J, Zhao J, Yan B, Zhou W, Zhang W, Zhang H, J. Sci. Food Agric., 99, 6 (2019)
Shima S, Matsuoka H, Iwamoto T, Sakai H, J. Antibiot., 37, 11 (1984)
Takehara M, Hibino A, Saimura M, Hirohara H, Biotechnol. Lett., 32, 9 (2010)
Wei M, Ge Y, Li C, Chen Y, Wang W, Duan B, Li X, Physiol. Mol. Plant Pathol., 103, 23 (2018)
Ye R, Xu H, Wan C, Peng S, Wang L, Xu H, Aguilar ZP, Xiong Y, Zeng Z, Wei H, Biochem. Biophys. Res. Commun., 439, 1 (2013)
Liu K, Zhou X, Fu M, Postharvest Biol. Tec., 123, 94 (2017)
Li H, He C, Li G, Zhang Z, Li B, Tian S, Postharvest Biol. Technol., 147, 1 (2019)
Wang E, Li Y, Maguy BL, Lou Z, Wang H, Zhao W, Chen X, Food Chem., 294, 533 (2019)
Veerman ECI, Valentijn-Benz M, van’t Hof W, Nazmi K, van Marle J, Amerongen AVN, Biol. Chem., 391, 1 (2010)
Zhang S, Xiong J, Lou W, Ning Z, Zhang D, Yang J, Przem. Chem., 98(1), 113 (2019)
Ding MZ, Zhou X, Yuan Y, Metabolomics, 6, 1 (2010)
Shih IL, Shen MH, Van YTJBT, Bioresour. Technol., 97, 9 (2006)
Song R, Wei RB, Luo HY, Wang DFJM, Molecules, 17, 3 (2012)
Guilhelmelli F, Vilela N, Albuquerque P, Derengowski LS, Silva-Pereira I, Kyaw C, Front Microbiol., 4, 353 (2013)
Yeaman MR, Yount NY, Pharmacol. Rev., 55, 1 (2003)
Ladokhin AS, White SHJBB, BBA-Biomembranes, 1514, 2 (2001)
Teixeira V, Feio MJ, Bastos M, Prog. Lipid Res., 51, 2 (2012)
Brogden KA, Nat. Rev. Microbiol., 3, 3 (2005)
Singer MA, Lindquist S, Trends in Biotechnol., 16, 11 (1998).
Sharma SC, FEMS Microbiol. Lett., 152, 11 (1997)
Parrou JL, Teste MA, Francois J, J. Microbiol., 143, 6 (1997)
Godon C, Lagniel G, Lee J, Buhler JM, Kieffer S, Perrot R, Boucherie H, Toledano MB, Labarre J, J. Biol. Chem., 273, 35 (1998)
Natera V, Sobrevals L, Fabra A, Castro S, Curr. Microbiol., 53, 6 (2006)
Yap S, Lim SJAOM, Arch Microbiol., 135, 3 (1983)
Takagi H, Iwamoto F, Nakamori S, Appl. Microbiol. Biotechnol., 47, 4 (1997)
Kubota S, Takeo I, Kume K, Kanai M, Shitamukai A, Mizunuma M, Miyakawa T, Shimoi H, Iefuji H, Hirata D, Biosci. Biotechnol. Biochem., 68, 4 (2004)
Li H, Ma M, Luo S, Zhang R, Han P, Hu W, Int. J. Biochem. Cell B., 44, 7 (2012)
Ding M, Wang X, Yang Y, Yuan Y, OMICS: J. Integrative Biol., 15, 10 (2011)
Barsch A, Carvalho HG, Cullimore JV, Niehaus K, J. Biotechnol., 127, 1 (2006)