ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 7, 2019
Accepted December 4, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Nitrogen removal and nitrogenous intermediate production of the heterotrophic membrane-aerated biofilm: A mathematical modeling investigation

1College of Fisheries, Henan Normal University, Xinxiang 453007, P. R. China 2Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China 3State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China
libaoan@tju.edu.cn
Korean Journal of Chemical Engineering, March 2020, 37(3), 525-535(11), 10.1007/s11814-019-0454-0
downloadDownload PDF

Abstract

A one-dimensional biofilm model was applied to illustrate the nitrogen conversion and removal within the heterogeneous biofilm attached on the gas-permeable membrane with different oxygen transfer coefficients: 7.5m/d, 1.5m/d and 0.3m/d. Integrating the ammonia-oxidizing bacteria-mediating hydroxylamine oxidization pathway during the autotrophic nitrification and the four-step denitrification pathway during the heterotrophic denitrification, the effects of the intra-membrane aeration pressure and the influent COD/N ratio were further quantitatively evaluated on the systematic performance of nitrogen conversion. Dynamic profiles of key nitrogenous intermediates were investigated to further analyze the treatment efficacy of the targeted biofilm system. It is inapplicable for membrane with oxygen transfer coefficient of 0.3m/d to sustain the biofilm due to the inferior treatment performance under higher influent organics and distinct nitrous oxide (N2O) production with elevated aeration pressures under lower influent organics. For the oxygen transfer coefficients of 7.5m/d and 1.5m/d, N2O production was detectable for the insufficient carbon source, indicating the significance of hydroxylamine oxidization. Short-cut nitrogen removal pathway could be feasible within the latter biofilm due to the nitrite accumulation, further reduced by supplementing the carbon source. Heterotrophic denitrification would contribute to the N2O production. Maintaining the biofilm thickness was conducive to short-cut nitrogen removal by regulating the substrate transfer and the biomass distribution along the biofilm. Besides the total nitrogen removal efficiency, the nitrite accumulation and N2O production were both decreased with the thickening biofilm. Inside the thinner biofilm, a short-cut pathway via nitrite might be the major pathway for nitrogen removal with distinguished N2O production, which could be mitigated through supplementing the carbon source.

References

Nerenberg R, Curr. Opin. Biotechnol., 38, 131 (2016)
Li M, Du CY, Liu J, Quan X, Lan MC, Li BA, Chem. Eng. J., 338, 680 (2018)
Kampschreur MJ, Tan NCG, Kleerebezem R, Picioreanu C, Jetten MSM, van Loosdrecht MCM, Environ. Sci. Technol., 42, 429 (2007)
Kampschreur MJ, Picioreanu C, Tan NCG, Kleerebezem R, Jetten MSM, van Loosdrecht MCM, Water Environ. Res., 79, 2499 (2007)
IPCC, Climate change 2001: the scientific basis, Cambridge University Press, Cambridge (2001).
Zumft WG, Am. Soc. Microbiol., 61, 533 (1997)
Kampschreur MJ, van der Star WRL, Wielders HA, Mulder JW, Jetten MSM, van Loosdrecht MCM, Water Res., 42, 812 (2008)
Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MSM, van Loosdrecht MCM, Water Res., 43, 4093 (2009)
Peng L, Ni BJ, Ye L, Yuan ZG, Chem. Eng. J., 281, 661 (2015)
Hooper AB, Vannelli T, Bergmann DJ, Arciero DM, Antonie van Leeuwenhoek, 71, 59 (1997)
Colliver BB, Stephenson T, Biotechnol. Adv., 18, 219 (2000)
Ni BJ, Peng L, Law Y, Guo J. Yuan Z, Environ. Sci. Technol., 48, 3916 (2014)
Yu R, Kampschreur MJ, van Loosdrecht MCM, Chandran K, Environ. Sci. Technol., 44, 1313 (2010)
Kim SW, Miyahara M, Fushinobu S, Wakagi T, Shoun H, Bioresour. Technol., 101(11), 3958 (2010)
Ni BJ, Ruscalleda M, Pellicer-Nacher C, Smets BF, Environ. Sci. Technol., 45, 7768 (2011)
Poth M, Focht DD, Appl. Environ. Microbiol., 49, 1134 (1985)
Wrage N, Velthof GL, van Beusichem ML, Oenema O, Soil Biol. Biochem., 33, 1723 (2001)
Poughon L, Dussap CG, Gros JB, Biotechnol. Bioeng., 72, 416 (2000)
Ni BJ, Yuan Z, Water Res., 87, 336 (2015)
Hiatt WC, Grady CPL, Water Environ. Res., 80, 2145 (2008)
Butler MD, Wang YY, Cartmell E, Stephenson T, Water Res., 43, 1265 (2009)
Yang Q, Liu X, Peng C, Wang S, Sun H, Peng Y, Environ. Sci. Technol., 43, 9400 (2009)
Foley J, de Haas D, Yuan Z, Lant P, Water Res., 44, 831 (2010)
Schreiber F, Loeffler B, Polerecky L, Kuypers MMM, de Beer D, ISME J., 3, 1301 (2009)
Kampschreur MJ, Poldermans R, Kleerebezem R, van der Star WR, Haarhuis R, Abma WR, Jetten MSM, van Loosdrecht MCM, Water Sci. Technol., 60, 3211 (2009)
Pan Y, Ni BJ, Lu H, Chandran K, Richardson D, Yuan Z, Water Res., 71, 21 (2015)
Peng L, Sun J, Liu Y, Dai X, Ni BJ, Sci. Rep., 6, 28880 (2016)
Ni BJ, Yuan ZG, Chandran K, Vanrolleghem PA, Murthy S, Biotechnol. Bioeng., 110(1), 153 (2013)
Sabba F, Picioreanu C, Perez J, Nerenberg R, Environ. Sci. Technol., 49, 1486 (2015)
Ni BJ, Yuan ZG, J. Membr. Sci., 428, 163 (2013)
Wang R, Terada A, Lackner S, Smets BF, Henze M, Xia S, Zhao J, Water Res., 43, 2699 (2009)
Mampaey KE, Beuckels B, Kampschreur MJ, Kleerebezem R, van Loosdrecht MCM, Volcke EIP, Environ. Technol., 34, 1555 (2013)
Ni BJ, Ye L, Law Y, Byers C, Yuan Z, Environ. Sci. Technol., 47, 7795 (2013)
Reichert P, Computer program for the identification and simulation of aquatic systems, Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dubendorf, Switzerland (1998).
Debus O, Wanner O, Wat. Sci. Technol., 26, 607 (1992)
Liu Y, Peng L, Ngo HH, Guo W, Wang D, Pan Y, Sun J, Ni BJ, Environ. Sci. Technol., 50, 9407 (2016)
Peng L, Liu YW, Ni BJ, Chem. Eng. J., 287, 217 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로